论文标题

使用弱遗传因素在顺式孟德尔随机中的有条件推断

Conditional inference in cis-Mendelian randomization using weak genetic factors

论文作者

Patel, Ashish, Gill, Dipender, Newcombe, Paul J., Burgess, Stephen

论文摘要

孟德尔随机化是一种广泛使用的方法,可以通过使用遗传变异作为仪器变量来估计暴露对结果的不符影响。使用来自单个遗传区域(CIS-MR)变体的Mendelian随机分析已成为一种经济的方式来提供药物靶标验证证据的经济方式。本文提出了CIS-MR推理的方法,该方法使用许多相关变体的解释力,即使在这些变体仅对暴露效果较弱的情况下,也可以做出有效的推论。特别是,我们利用单个基因区域中遗传相关性的高度结构化性质,使用因子分析降低遗传变异的维度。然后,这些遗传因素用作构造感兴趣的因果效应的工具变量。由于这些因素通常可能与暴露相关,因此标准t检验的尺寸扭曲可能很严重。因此,我们考虑了基于条件测试的两种方法。首先,我们扩展了常用识别式测试的结果,以说明使用估计因素作为工具的使用。其次,我们提出了一项测试,该测试根据其相关性适当调整遗传因素的第一阶段筛查。我们的经验结果提供了遗传证据,以验证旨在预防冠心病的降低胆固醇的药物靶标。

Mendelian randomization is a widely-used method to estimate the unconfounded effect of an exposure on an outcome by using genetic variants as instrumental variables. Mendelian randomization analyses which use variants from a single genetic region (cis-MR) have gained popularity for being an economical way to provide supporting evidence for drug target validation. This paper proposes methods for cis-MR inference which use the explanatory power of many correlated variants to make valid inferences even in situations where those variants only have weak effects on the exposure. In particular, we exploit the highly structured nature of genetic correlations in single gene regions to reduce the dimension of genetic variants using factor analysis. These genetic factors are then used as instrumental variables to construct tests for the causal effect of interest. Since these factors may often be weakly associated with the exposure, size distortions of standard t-tests can be severe. Therefore, we consider two approaches based on conditional testing. First, we extend results of commonly-used identification-robust tests to account for the use of estimated factors as instruments. Secondly, we propose a test which appropriately adjusts for first-stage screening of genetic factors based on their relevance. Our empirical results provide genetic evidence to validate cholesterol-lowering drug targets aimed at preventing coronary heart disease.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源