论文标题

半监督的肺结节检索

Semi-supervised lung nodule retrieval

论文作者

Loyman, Mark, Greenspan, Hayit

论文摘要

基于内容的图像检索(CBIR)为临床医生提供了可以支持并希望改善其决策过程的视觉信息。给定输入查询映像,CBIR系统作为其输出一组图像提供,以与查询图像相似的方式排名。检索的图像可能带有相关信息,例如基于活检的恶性标签或分类。关于数据集元素(例如结节之间)之间相似性的基础真相不容易获得,因此机器学习方法极具挑战性。由于任务的主观性质,这种注释尤其难以获得,并且观察者间的可变性很高,需要多个专家注释。因此,过去的方法集中在手动特征提取上,而当前的方法使用辅助任务,例如二进制分类任务(例如恶性),对于该任务更容易访问地面真实。但是,在先前的研究中,我们已经表明,二进制辅助任务不如使用数据注释得出的粗略相似性估计值。当前的研究提出了一种半监督的方法,涉及两个步骤:1)给定部分标记的数据集的自动注释; 2)学习基于预测注释的语义相似性度量空间。使用LIDC数据集在肺结节检索中证明了所提出的系统,并表明从预测评分中学习嵌入是可行的。半监督的方法表明,与完全不受欢迎的参考相比,判别能力明显更高。

Content based image retrieval (CBIR) provides the clinician with visual information that can support, and hopefully improve, his or her decision making process. Given an input query image, a CBIR system provides as its output a set of images, ranked by similarity to the query image. Retrieved images may come with relevant information, such as biopsy-based malignancy labeling, or categorization. Ground truth on similarity between dataset elements (e.g. between nodules) is not readily available, thus greatly challenging machine learning methods. Such annotations are particularly difficult to obtain, due to the subjective nature of the task, with high inter-observer variability requiring multiple expert annotators. Consequently, past approaches have focused on manual feature extraction, while current approaches use auxiliary tasks, such as a binary classification task (e.g. malignancy), for which ground-true is more readily accessible. However, in a previous study, we have shown that binary auxiliary tasks are inferior to the usage of a rough similarity estimate that are derived from data annotations. The current study suggests a semi-supervised approach that involves two steps: 1) Automatic annotation of a given partially labeled dataset; 2) Learning a semantic similarity metric space based on the predicated annotations. The proposed system is demonstrated in lung nodule retrieval using the LIDC dataset, and shows that it is feasible to learn embedding from predicted ratings. The semi-supervised approach has demonstrated a significantly higher discriminative ability than the fully-unsupervised reference.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源