论文标题

随机编程中顺序采样的差异差异

Variance Reduction for Sequential Sampling in Stochastic Programming

论文作者

Park, Jangho, Stockbridge, Rebecca, Bayraksan, Güzin

论文摘要

本文研究了在随机编程中进行顺序采样时,研究了降低技术对立变量(AV)和拉丁高管采样(LHS),并提供了比较计算研究。它显示了与AV和LHS顺序采样满足有限停止保证的条件,并且在详细讨论LHS的情况下是有效的。它通过计算,通过具有不同特征的两阶段随机线性程序的集合来比较它们在顺序和非序列设置中的使用。数值结果表明,尽管AV和LHS在任一设置中都可以比随机采样都可取,但LHS通常在非顺序设置中占主导地位,同时进行顺序进行良好的表现,并且AV在顺序设置中获得了一些优势。这些结果表明,鉴于这些差异技术的易于实施,具有相同的理论特性,并且相对于随机抽样而具有改善的经验性能,因此AV和LHS顺序程序在一类随机程序的实践中提供了有吸引力的替代方案。

This paper investigates the variance reduction techniques Antithetic Variates (AV) and Latin Hypercube Sampling (LHS) when used for sequential sampling in stochastic programming and presents a comparative computational study. It shows conditions under which the sequential sampling with AV and LHS satisfy finite stopping guarantees and are asymptotically valid, discussing LHS in detail. It computationally compares their use in both the sequential and non-sequential settings through a collection of two-stage stochastic linear programs with different characteristics. The numerical results show that while both AV and LHS can be preferable to random sampling in either setting, LHS typically dominates in the non-sequential setting while performing well sequentially and AV gains some advantages in the sequential setting. These results imply that, given the ease of implementation of these variance reduction techniques, armed with the same theoretical properties and improved empirical performance relative to random sampling, AV and LHS sequential procedures present attractive alternatives in practice for a class of stochastic programs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源