论文标题

视频自适应360度视频流的在线比特率选择

Online Bitrate Selection for Viewport Adaptive 360-Degree Video Streaming

论文作者

Tang, Ming, Wong, Vincent W. S.

论文摘要

360度视频流通过实时确定其视野(FOV)来为用户提供沉浸式体验。为了提高用户的经验质量(QOE),鉴于其带宽有限,最近的作品通过利用空间和时间域中的比特率适应性来提出一个视口自适应360度视频流模型。在本文中,在本文中,我们考虑了一个新生成的360度视频的情况,而无需查看其他用户的历史记录。为了最大化用户的QOE,我们提出了一种在线比特率选择算法,称为obs360。拟议的在线算法可以适应未知和异质用户的FOV和下载能力。我们证明,拟议的算法在凸决策中实现了sublinear动态遗憾。这表明,随着视频段数量的增加,在线算法的性能接近了离线算法的性能,在该算法中,用户的FOV和下载能力是已知的。我们使用现实世界数据集执行模拟,以评估所提出的算法的性能。结果表明,与几种现有方法相比,我们提出的算法可以通过提高观看比特率并减少用户的段间段和细分降解损失来显着增强用户的QOE。

360-degree video streaming provides users with immersive experience by letting users determine their field-of-views (FoVs) in real time. To enhance the users' quality of experience (QoE) given their limited bandwidth, recent works have proposed a viewport adaptive 360-degree video streaming model by exploiting the bitrate adaptation in spatial and temporal domains. Under this video streaming model, in this paper, we consider a scenario with a newly generated 360-degree video without viewing history from other users. To maximize the user's QoE, we propose an online bitrate selection algorithm, called OBS360. The proposed online algorithm can adapt to the unknown and heterogeneous users' FoVs and downloading capacities. We prove that the proposed algorithm achieves sublinear dynamic regret under a convex decision set. This suggests that as the number of video segments increases, the performance of the online algorithm approaches the performance of the offline algorithm, where the users' FoVs and downloading capacities are known. We perform simulations with real-world dataset to evaluate the performance of the proposed algorithm. Results show that compared with several existing methods, our proposed algorithm can enhance the users' QoE significantly by improving the viewing bitrate and reducing the inter-segment and intra-segment degradation losses of the users.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源