论文标题

在美国与冠状病毒的斗争的步伐和脉搏,Google趋势方法

The Pace and Pulse of the Fight against Coronavirus across the US, A Google Trends Approach

论文作者

Mangono, Tichakunda, Smittenaar, Peter, Caplan, Yael, Huang, Vincent S., Sutermaster, Staci, Kemp, Hannah, Sgaier, Sema K.

论文摘要

冠状病毒大流行正在以前所未有的速度和规模影响我们的生活,包括我们的饮食和工作方式,我们担心的东西,我们的移动程度以及我们的赚钱能力。 Google趋势可以用作人们在想,需要和计划的代理。我们使用它来提供有关在Covid-19等大流行过程中信息寻求模式重要变化的重要变化的见解,也可以提供潜在的指标。我们解决的关键问题是:(1)冠状病毒爆发与互联网寻求,政府支持计划,不同意识形态的媒体,围绕社交活动,旅行和食物的计划以及新的冠状病毒特定的行为和关注的媒体之间有什么关系? (2)搜索词的普及在各州和地区之间有何不同,我们可以解释这些差异吗? (3)我们能否在各州之间找到明显的,有形的搜索模式,这些州暗示政策差距为大流行反应提供信息吗? (4)Google趋势数据是否与现实生活事件相关并有可能在现实生活中相关?我们建议对决策者提高非药物干预措施(NPI)的精度和有效性的战略转变,并建议开发实时仪表板作为决策工具。所使用的方法包括对美国搜索数据的趋势分析; 2020年3月1日至4月15日,美国各州搜索流行的差异的地理分析;和主成分分析(PCA)以跨州提取搜索模式。

The coronavirus pandemic is impacting our lives at unprecedented speed and scale - including how we eat and work, what we worry about, how much we move, and our ability to earn. Google Trends can be used as a proxy for what people are thinking, needing, and planning. We use it to provide both insights into, and potential indicators of, important changes in information-seeking patterns during pandemics like COVID-19. Key questions we address are: (1) What is the relationship between the coronavirus outbreak and internet searches related to healthcare seeking, government support programs, media sources of different ideologies, planning around social activities, travel, and food, and new coronavirus-specific behaviors and concerns?; (2) How does the popularity of search terms differ across states and regions and can we explain these differences?; (3) Can we find distinct, tangible search patterns across states suggestive of policy gaps to inform pandemic response? (4) Does Google Trends data correlate with and potentially precede real-life events? We suggest strategic shifts for policy makers to improve the precision and effectiveness of non-pharmaceutical interventions (NPIs) and recommend the development of a real-time dashboard as a decision-making tool. Methods used include trend analysis of US search data; geographic analyses of the differences in search popularity across US states during March 1st to April 15th, 2020; and Principal Component Analyses (PCA) to extract search patterns across states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源