论文标题
连贯的光学多普勒轨道摄影的方法
Methods for coherent optical Doppler orbitography
论文作者
论文摘要
多普勒轨道造影使用传输信号中的多普勒移位来确定卫星的轨道参数,包括范围和范围率(或径向速度)。我们描述了两种用于大气限制的光学多普勒轨道摄影测量值的技术。第一个确定多普勒直接从返回光信号的杂差测量中移动。第二个目的是通过抑制印记在传输光学信号上的大气相噪声来提高第一的精度。我们在2.2 km的水平链路上演示了每种技术的性能,并在远端进行了模拟的内速度多普勒移位。据估计,该长度的水平链接显示出垂直链路与空间的总体湍流的一半。在不稳定大气效应的情况下,我们在整合1 s时获得了估计的范围速率精度为17 um/s。通过主动抑制大气相噪声,在整合的1秒钟1秒钟的估计范围速率精度为9.0 nm/s,在60秒内整合时,这可以改善9.0 nm/s,1.1 nm/s。这代表了在相同集成时间的范围速率精度方面,与空间X波段系统的典型性能相比,量顺序的提高了四个阶级。 该系统的性能是连贯的光学多普勒轨道造影的有前途的概念证明。与从地面到空间进行这些技术相关的挑战还有许多其他挑战,这些挑战未在此处提出的初步实验中捕获。将来,我们旨在朝着10公里的水平链接前进,以将预期的大气湍流复制到空间连接。
Doppler orbitography uses the Doppler shift in a transmitted signal to determine the orbital parameters of satellites including range and range-rate (or radial velocity). We describe two techniques for atmospheric-limited optical Doppler orbitography measurements of range-rate. The first determines the Doppler shift directly from a heterodyne measurement of the returned optical signal. The second aims to improve the precision of the first by suppressing atmospheric phase noise imprinted on the transmitted optical signal. We demonstrate the performance of each technique over a 2.2 km horizontal link with a simulated in-line velocity Doppler shift at the far end. A horizontal link of this length has been estimated to exhibit nearly half the total integrated atmospheric turbulence of a vertical link to space. Without stabilisation of the atmospheric effects, we obtained an estimated range rate precision of 17 um/s at 1 s of integration. With active suppression of atmospheric phase noise, this improved by three orders-of-magnitude to an estimated range rate precision of 9.0 nm/s at 1 second of integration, and 1.1 nm/s when integrated over a 60 s. This represents four orders-of-magnitude improvement over the typical performance of operational ground to space X-Band systems in terms of range-rate precision at the same integration time. The performance of this system is a promising proof of concept for coherent optical Doppler orbitography. There are many additional challenges associated with performing these techniques from ground to space, that were not captured within the preliminary experiments presented here. In the future, we aim to progress towards a 10 km horizontal link to replicate the expected atmospheric turbulence for a ground to space link.