论文标题
视网膜中图像分割的模型
A Model for Image Segmentation in Retina
论文作者
论文摘要
尽管传统的前馈滤波器模型可以重现视网膜神经节神经元对简单刺激的速率响应,但他们无法解释为什么峰值之间的同步远高于泊松射击[6]的预期,有时可能是有节奏的[25,16]。在这里,我们研究了以下假设:周期性视网膜尖峰列车中的同步可以传达视觉输入的上下文信息,这是通过视网膜网络中的计算提取的。我们为图像分割提出了一个计算模型,该模型由耦合振荡器的库拉莫托模型组成,该模型的相位对单个视网膜尖峰的时机进行了建模。振荡器之间的相位耦合是由刺激结构塑造的,导致细胞同步,如果其接收场中的局部对比度相似。从本质上讲,振荡器网络中的放松解决了图形聚类问题,图形表示图像中不同点之间的特征相似性。我们在伯克利图像分割数据集(BSD)上测试了不同的模型版本。通过特征图的标准表示设置的相互作用的网络(邻接矩阵,图形laplacian或模块化)无法在基线(一个独立传感器的模型)上显着显示分割性能。相比之下,具有相互作用的网络不仅要考虑到相似性,而且在接收场之间的几何距离表现出明显高于基线的分割性能。
While traditional feed-forward filter models can reproduce the rate responses of retinal ganglion neurons to simple stimuli, they cannot explain why synchrony between spikes is much higher than expected by Poisson firing [6], and can be sometimes rhythmic [25, 16]. Here we investigate the hypothesis that synchrony in periodic retinal spike trains could convey contextual information of the visual input, which is extracted by computations in the retinal network. We propose a computational model for image segmentation consisting of a Kuramoto model of coupled oscillators whose phases model the timing of individual retinal spikes. The phase couplings between oscillators are shaped by the stimulus structure, causing cells to synchronize if the local contrast in their receptive fields is similar. In essence, relaxation in the oscillator network solves a graph clustering problem with the graph representing feature similarity between different points in the image. We tested different model versions on the Berkeley Image Segmentation Data Set (BSDS). Networks with phase interactions set by standard representations of the feature graph (adjacency matrix, Graph Laplacian or modularity) failed to exhibit segmentation performance significantly over the baseline, a model of independent sensors. In contrast, a network with phase interactions that takes into account not only feature similarities but also geometric distances between receptive fields exhibited segmentation performance significantly above baseline.