论文标题

深层复发模型,用于对阿尔茨海默氏病进展的个性化预测

Deep Recurrent Model for Individualized Prediction of Alzheimer's Disease Progression

论文作者

Jung, Wonsik, Jun, Eunji, Suk, Heung-Il

论文摘要

阿尔茨海默氏病(AD)被称为痴呆症的主要原因之一,其特征是几年内进展缓慢,没有治疗或可用的药物。在这方面,已经努力确定最早的广告发展风险。尽管以前的许多作品都考虑了横截面分析,但最新的研究集中在以疾病进展模型(DPM)方式使用纵向或时间序列数据的AD的诊断和预后。在相同的问题设置下,在这项工作中,我们提出了一个新型的计算框架,可以预测MRI生物标志物和临床状况轨迹的表型测量以及在多个将来的时间点上的认知评分。但是,在处理时间序列数据时,它通常面临许多意外的丢失观察结果。关于这种不利的情况,我们定义了一个次要问题,即通过考虑时间序列数据中固有的时间和多元关系来估计这些缺失值并以系统的方式解决这些问题。具体而言,我们提出了一个深层复发网络,该网络共同解决了(i)(i)缺少价值插补的四个问题,(ii)表型测量预测,(iii)认知评分的轨迹估计以及(iv)基于他/她的较长的成像生物标志物对受试者的临床状态预测。值得注意的是,我们网络的可学习模型参数以端到端的方式进行了训练,并以我们谨慎的定义损失函数进行了训练。在我们的t挑战赛中的实验中,我们测量了各种指标的性能,并将我们的方法与文献中的竞争方法进行了比较。还进行了详尽的分析和消融研究,以更好地确认我们方法的有效性。

Alzheimer's disease (AD) is known as one of the major causes of dementia and is characterized by slow progression over several years, with no treatments or available medicines. In this regard, there have been efforts to identify the risk of developing AD in its earliest time. While many of the previous works considered cross-sectional analysis, more recent studies have focused on the diagnosis and prognosis of AD with longitudinal or time series data in a way of disease progression modeling (DPM). Under the same problem settings, in this work, we propose a novel computational framework that can predict the phenotypic measurements of MRI biomarkers and trajectories of clinical status along with cognitive scores at multiple future time points. However, in handling time series data, it generally faces with many unexpected missing observations. In regard to such an unfavorable situation, we define a secondary problem of estimating those missing values and tackle it in a systematic way by taking account of temporal and multivariate relations inherent in time series data. Concretely, we propose a deep recurrent network that jointly tackles the four problems of (i) missing value imputation, (ii) phenotypic measurements forecasting, (iii) trajectory estimation of the cognitive score, and (iv) clinical status prediction of a subject based on his/her longitudinal imaging biomarkers. Notably, the learnable model parameters of our network are trained in an end-to-end manner with our circumspectly defined loss function. In our experiments over TADPOLE challenge cohort, we measured performance for various metrics and compared our method to competing methods in the literature. Exhaustive analyses and ablation studies were also conducted to better confirm the effectiveness of our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源