论文标题

通过网络流优化的多目标预测出租车调度

Multi-Objective Predictive Taxi Dispatch via Network Flow Optimization

论文作者

Kim, Beomjun, Kim, Jeongho, Huh, Subin, You, Seungil, Yang, Insoon

论文摘要

在本文中,我们在多目标环境中讨论了一个大规模的车队管理问题。我们的目标是寻求一种退缩的地平线出租车调度解决方案,该解决方案可提供尽可能多的乘车要求,同时最大程度地减少搬迁车辆的成本。为了获得所需的解决方案,我们首先将多目标出租车调度问题转换为网络流问题,可以使用经典最低成本最大流量(MCMF)算法来解决该问题。我们表明,使用MCMF算法获得的解决方案是整数值的;因此,它不需要任何其他可能引入不良数值错误的圆形程序。此外,我们证明了所提出的解决方案的时间纠正属性,这证明了恢复的地平线优化的使用是合理的。对于计算效率,我们提出了一种线性编程方法,以实时获得最佳解决方案。我们使用现实世界数据的仿真研究结果为韩国首尔大都市地区的现实数据表明,所提出的预测方法的性能几乎与预见未来的甲骨文的性能一样好。

In this paper, we discuss a large-scale fleet management problem in a multi-objective setting. We aim to seek a receding horizon taxi dispatch solution that serves as many ride requests as possible while minimizing the cost of relocating vehicles. To obtain the desired solution, we first convert the multi-objective taxi dispatch problem into a network flow problem, which can be solved using the classical minimum cost maximum flow (MCMF) algorithm. We show that a solution obtained using the MCMF algorithm is integer-valued; thus, it does not require any additional rounding procedure that may introduce undesirable numerical errors. Furthermore, we prove the time-greedy property of the proposed solution, which justifies the use of receding horizon optimization. For computational efficiency, we propose a linear programming method to obtain an optimal solution in near real time. The results of our simulation studies using real-world data for the metropolitan area of Seoul, South Korea indicate that the performance of the proposed predictive method is almost as good as that of the oracle that foresees the future.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源