论文标题
随机瓶颈:无重量的自动编码器,用于降低灵活的维度
Stochastic Bottleneck: Rateless Auto-Encoder for Flexible Dimensionality Reduction
论文作者
论文摘要
我们提出了一个新的无重量自动编码器(RL-AES)的概念,该概念可以启用灵活的潜在维度,可以无缝调整,以适应不同的失真和维度要求。在拟议的RL-AES中,我们使用的是确定性的瓶颈结构,而是使用过度完整的表示,该表示与稀疏AE(SAE)类似于加权的辍学式随机定期化。与SAE不同,我们的RL-AES在潜在表示节点上采用单调提高的辍学率,从而像主成分分析(PCA)一样被潜在变量按重要性排序。这是由常规PCA的无重量属性引起的,在该财产中,可以丢弃最不重要的主要组件以实现可变的速率降低性降低,从而优雅地降低了失真。相反,由于常规AE的潜在变量对于数据重建同样重要,因此不能简单地丢弃它们以进一步降低AE模型后的维度。我们提出的随机瓶颈框架可以使无缝的速率适应具有较高的重建性能,而无需训练时预先确定的潜在维度。我们通过实验表明,与常规AE相比,提出的RL-AES可以实现可变的尺寸降低,同时实现低失真。
We propose a new concept of rateless auto-encoders (RL-AEs) that enable a flexible latent dimensionality, which can be seamlessly adjusted for varying distortion and dimensionality requirements. In the proposed RL-AEs, instead of a deterministic bottleneck architecture, we use an over-complete representation that is stochastically regularized with weighted dropouts, in a manner analogous to sparse AE (SAE). Unlike SAEs, our RL-AEs employ monotonically increasing dropout rates across the latent representation nodes such that the latent variables become sorted by importance like in principal component analysis (PCA). This is motivated by the rateless property of conventional PCA, where the least important principal components can be discarded to realize variable rate dimensionality reduction that gracefully degrades the distortion. In contrast, since the latent variables of conventional AEs are equally important for data reconstruction, they cannot be simply discarded to further reduce the dimensionality after the AE model is trained. Our proposed stochastic bottleneck framework enables seamless rate adaptation with high reconstruction performance, without requiring predetermined latent dimensionality at training. We experimentally demonstrate that the proposed RL-AEs can achieve variable dimensionality reduction while achieving low distortion compared to conventional AEs.