论文标题
复杂歧管上的单数形式的残留物和电流
Residues and currents from singular forms on complex manifolds
论文作者
论文摘要
使用从残基电流理论中的方法,我们提供了复杂歧管上某些不同积分的渐近扩展。我们用Felder和Kazhdan引入的共轭Dolbeault残留物来表达这些系数,并定义了一种新残基,我们称之为AEPPLI残基。
Using methods from the theory of residue currents we provide asymptotic expansions of certain divergent integrals on complex manifolds. We express the coefficients in these expansions with the conjugate Dolbeault residue, introduced by Felder and Kazhdan, and define a new residue which we call the Aeppli residue.