论文标题

计算绩效和节能同态加密的内存计算

Computing-in-Memory for Performance and Energy Efficient Homomorphic Encryption

论文作者

Reis, Dayane, Takeshita, Jonathan, Jung, Taeho, Niemier, Michael, Hu, Xiaobo Sharon

论文摘要

同态加密(HE)允许对加密数据进行直接计算。尽管进行了许多研究工作,但HE计划的实用性仍有待证明。在这方面,HE计算中涉及的密文的巨大大小降低了计算效率。接近内存的处理(NMP)和内存计算(CIM) - 在内存边界内完成计算的范例 - 代表用于减少与数据密集型应用程序中数据传输相关的延迟和能量的架构解决方案。本文介绍了CIM-HE,这是一种内存计算(CIM)体系结构,可以支持B/FV方案的操作,B/FV方案是一种用于一般计算的同型加密方案。 CIM-HE硬件由自定义的外围设备组成,例如感官放大器,加法器,位移位器和测序电路。外围设备基于CMOS技术,并且可以通过不同技术的存储单元来支持计算。假设有6T-SRAM内存,使用电路级模拟来评估我们的CIM-HE框架。我们将我们的CIM-HE实施与(i)两个优化的CPU HE进行比较,以及(ii)基于FPGA的HE ACELERATOR实现。与CPU解决方案相比,CIM-HE获得了4.6倍至9.1倍之间的加速度,同型乘法(他操作最昂贵)的能源节省在266.4倍至532.8倍之间。同样,一组四个端到端任务,即平均值,方差,线性回归和推理,高达1.1倍,7.7倍,7.1倍和7.5倍(以及301.1x,404.6 x,532.3x,和532.8倍的能量效率)。与基于CPU的HE相比,CIM-HE获得了14.3倍的速度和> 2600x的能量节省。最后,与最先进的基于FPGA的加速器相比,我们的设计提供了2.2倍的速度,并节省了88.1倍的能源。

Homomorphic encryption (HE) allows direct computations on encrypted data. Despite numerous research efforts, the practicality of HE schemes remains to be demonstrated. In this regard, the enormous size of ciphertexts involved in HE computations degrades computational efficiency. Near-memory Processing (NMP) and Computing-in-memory (CiM) - paradigms where computation is done within the memory boundaries - represent architectural solutions for reducing latency and energy associated with data transfers in data-intensive applications such as HE. This paper introduces CiM-HE, a Computing-in-memory (CiM) architecture that can support operations for the B/FV scheme, a somewhat homomorphic encryption scheme for general computation. CiM-HE hardware consists of customized peripherals such as sense amplifiers, adders, bit-shifters, and sequencing circuits. The peripherals are based on CMOS technology, and could support computations with memory cells of different technologies. Circuit-level simulations are used to evaluate our CiM-HE framework assuming a 6T-SRAM memory. We compare our CiM-HE implementation against (i) two optimized CPU HE implementations, and (ii) an FPGA-based HE accelerator implementation. When compared to a CPU solution, CiM-HE obtains speedups between 4.6x and 9.1x, and energy savings between 266.4x and 532.8x for homomorphic multiplications (the most expensive HE operation). Also, a set of four end-to-end tasks, i.e., mean, variance, linear regression, and inference are up to 1.1x, 7.7x, 7.1x, and 7.5x faster (and 301.1x, 404.6x, 532.3x, and 532.8x more energy efficient). Compared to CPU-based HE in a previous work, CiM-HE obtain 14.3x speed-up and >2600x energy savings. Finally, our design offers 2.2x speed-up with 88.1x energy savings compared to a state-of-the-art FPGA-based accelerator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源