论文标题

从任务专业的对话代理人合奏的弱监督的神经反应选择

Weakly-Supervised Neural Response Selection from an Ensemble of Task-Specialised Dialogue Agents

论文作者

Saeed, Asir, Mai, Khai, Minh, Pham, Duc, Nguyen Tuan, Bollegala, Danushka

论文摘要

对话引擎结合了不同类型的代理与人类交谈的引擎很受欢迎。 但是,对话是动态的,从某种意义上说,选定的响应将改变对话,从而影响了对话中的后续话语,这使得响应选择成为一个具有挑战性的问题。 我们通过考虑对话历史记录,从一组异质对话代理产生的一组响应中选择最佳响应的问题,并提出\ emph {neural响应选择}方法。 培训了所提出的方法,以预测单个对话中的一组连贯的响应集,并通过课程培训机制考虑了自己的预测。 我们的实验结果表明,所提出的方法可以准确选择最合适的响应,从而显着改善对话系统中的用户体验。

Dialogue engines that incorporate different types of agents to converse with humans are popular. However, conversations are dynamic in the sense that a selected response will change the conversation on-the-fly, influencing the subsequent utterances in the conversation, which makes the response selection a challenging problem. We model the problem of selecting the best response from a set of responses generated by a heterogeneous set of dialogue agents by taking into account the conversational history, and propose a \emph{Neural Response Selection} method. The proposed method is trained to predict a coherent set of responses within a single conversation, considering its own predictions via a curriculum training mechanism. Our experimental results show that the proposed method can accurately select the most appropriate responses, thereby significantly improving the user experience in dialogue systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源