论文标题

连锁树遗传算法的多因素优化范例

A Multifactorial Optimization Paradigm for Linkage Tree Genetic Algorithm

论文作者

Binh, Huynh Thi Thanh, Thanh, Pham Dinh, Trung, Tran Ba, Thanh, Le Cong, Phong, Le Minh Hai, Swami, Ananthram, Lam, Bui Thu

论文摘要

链接树遗传算法(LTGA)是一种有效的进化算法(EA),可以使用问题变量之间的链接信息解决复杂问题。与规范遗传算法相比,LTGA在各种单任务优化方面的表现都很好,并且产生了令人鼓舞的结果。但是,LTGA是处理多任务优化问题的不合适方法。另一方面,多因素优化(MFO)可以同时解决独立的优化问题,这些问题在统一表示中编码以利用知识传递的过程。在本文中,我们通过结合LTGA和MFO的主要特征来介绍多因素链接树遗传算法(MF-LTGA)。 MF-LTGA能够同时解决多个优化任务,每个任务都会从共享表示形式中学习问题变量之间的依赖关系。这些知识旨在确定用于支持探索搜索空间的其他任务的高质量部分解决方案。此外,由于知识转移相关问题,MF-LTGA加快了融合。我们证明了所提出的算法在两个基准问题上的有效性:聚集的最短树木问题和欺骗性陷阱功能。与LTGA和现有方法相比,MF-LTGA在解决方案的质量或计算时间的表现都优于。

Linkage Tree Genetic Algorithm (LTGA) is an effective Evolutionary Algorithm (EA) to solve complex problems using the linkage information between problem variables. LTGA performs well in various kinds of single-task optimization and yields promising results in comparison with the canonical genetic algorithm. However, LTGA is an unsuitable method for dealing with multi-task optimization problems. On the other hand, Multifactorial Optimization (MFO) can simultaneously solve independent optimization problems, which are encoded in a unified representation to take advantage of the process of knowledge transfer. In this paper, we introduce Multifactorial Linkage Tree Genetic Algorithm (MF-LTGA) by combining the main features of both LTGA and MFO. MF-LTGA is able to tackle multiple optimization tasks at the same time, each task learns the dependency between problem variables from the shared representation. This knowledge serves to determine the high-quality partial solutions for supporting other tasks in exploring the search space. Moreover, MF-LTGA speeds up convergence because of knowledge transfer of relevant problems. We demonstrate the effectiveness of the proposed algorithm on two benchmark problems: Clustered Shortest-Path Tree Problem and Deceptive Trap Function. In comparison to LTGA and existing methods, MF-LTGA outperforms in quality of the solution or in computation time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源