论文标题
基于砂浆的熵稳定不连续的盖金方法
Mortar-based entropy-stable discontinuous Galerkin methods on non-conforming quadrilateral and hexahedral meshes
论文作者
论文摘要
非线性保护定律的高阶熵稳定的不连续的盖尔金(DG)方法通过将熵保守的有限体积通量与逐个组合(SBP)离散化矩阵相结合,从而重现了离散的熵不平等。在DG背景下,在张量产品(四边形和六面体)元素上,通常通过在Lobatto正交点上插入SBP矩阵。最近的工作已将熵稳定的DG方案的构建扩展到更准确的高斯正交点。 在这项工作中,我们将熵稳定的高斯搭配方案扩展到不合格的网格。熵稳定的DG方案需要计算熵在体积和表面正交节点之间的保守数值通量。在符合张量的产品网格中,在对齐的体积和表面节点时,仅在节点的“线”之间进行通量评估。但是,在不合格的网格上,体积和表面节点不再对齐,导致大量的通量评估。我们通过通过面部校正术语引入基于熵稳定的迫击炮垫来减少这笔费用,并为高阶精度提供必要的条件。在两个和三维中的数值实验证实了这种方法的稳定性和准确性。
High-order entropy-stable discontinuous Galerkin (DG) methods for nonlinear conservation laws reproduce a discrete entropy inequality by combining entropy conservative finite volume fluxes with summation-by-parts (SBP) discretization matrices. In the DG context, on tensor product (quadrilateral and hexahedral) elements, SBP matrices are typically constructed by collocating at Lobatto quadrature points. Recent work has extended the construction of entropy-stable DG schemes to collocation at more accurate Gauss quadrature points. In this work, we extend entropy-stable Gauss collocation schemes to non-conforming meshes. Entropy-stable DG schemes require computing entropy conservative numerical fluxes between volume and surface quadrature nodes. On conforming tensor product meshes where volume and surface nodes are aligned, flux evaluations are required only between "lines" of nodes. However, on non-conforming meshes, volume and surface nodes are no longer aligned, resulting in a larger number of flux evaluations. We reduce this expense by introducing an entropy-stable mortar-based treatment of non-conforming interfaces via a face-local correction term, and provide necessary conditions for high-order accuracy. Numerical experiments in both two and three dimensions confirm the stability and accuracy of this approach.