论文标题
量子扭曲器捆
The Quantum Twistor Bundle
论文作者
论文摘要
我们调查了构建为$ u(1)$的量子扭曲束 - Bonechi,Ciccoli和Tarlini的量子Instum instanton捆绑包的商。这是Brzeziński和Szymański最近提出的本地微不足道的非交通捆绑捆绑条件的例子。特别是,我们详细说明了对相应的$ c^*$ - 代数的“连续函数”在其非交互总空间上的代数。此外,我们分析了由于Landi,Pagani和Reina而导致的量子插入束的不同结构,找到了其多项式代数的基础,并发现了其包裹的$ C^*$代数的有趣和意外的特征。
We investigate the quantum twistor bundle constructed as a $U(1)$-quotient of the quantum instanton bundle of Bonechi, Ciccoli and Tarlini. It is an example of a locally trivial noncommutative bundle fulfilling conditions of the framework recently proposed by Brzeziński and Szymański. In particular, we give a detailed description of the corresponding $C^*$-algebra of 'continuous functions' on its noncommutative total space. Furthermore, we analyse a different construction of a quantum instanton bundle due to Landi, Pagani and Reina, find a basis of its polynomial algebra and discover an intriguing and unexpected feature of its enveloping $C^*$-algebra.