论文标题

Erdös的猜想的简短证明 - 每一个$ n \ equiv 13 \ textrm {mod} 24 $

A short proof of the conjecture of Erdös--Straus for every $n\equiv 13 \textrm{ mod }24$

论文作者

Gionfriddo, Mario, Guardo, Elena

论文摘要

The Erdös--Straus conjecture states that the equation $\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ has positive integer solutions $x,y,z$ for every postive integers $n\geq 2$.在此简短说明中,我们发现了$ n \ equiv13 \ textrm {mod} 24的著名猜想的解决方案。$

The Erdös--Straus conjecture states that the equation $\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ has positive integer solutions $x,y,z$ for every postive integers $n\geq 2$. In this short note we find explicity the solutions of the famous conjecture for the case $n\equiv13 \textrm{ mod } 24.$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源