论文标题
Erdös的猜想的简短证明 - 每一个$ n \ equiv 13 \ textrm {mod} 24 $
A short proof of the conjecture of Erdös--Straus for every $n\equiv 13 \textrm{ mod }24$
论文作者
论文摘要
The Erdös--Straus conjecture states that the equation $\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ has positive integer solutions $x,y,z$ for every postive integers $n\geq 2$.在此简短说明中,我们发现了$ n \ equiv13 \ textrm {mod} 24的著名猜想的解决方案。$
The Erdös--Straus conjecture states that the equation $\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ has positive integer solutions $x,y,z$ for every postive integers $n\geq 2$. In this short note we find explicity the solutions of the famous conjecture for the case $n\equiv13 \textrm{ mod } 24.$