论文标题

在一种自相似的集合上,有完整的重叠

On a kind of self-similar sets with complete overlaps

论文作者

Kong, Derong, Yao, Yuanyuan

论文摘要

令$ e $为由{\ it Iterated功能系统} {\ [f_0(x)= \ frac {x}β,\ quad f_1(x)= \ frac {x+1}β,\ quad F_ {β+1} = \ frac = \ frac = \ frac { $β\ ge 3 $。 {then} $ e $是一个自相似的集合,具有完整的{重叠},即$ f_ {0} \ circ f_ {β+1} = f_ {1} \ circ f_1 $,但$ e $并非完全自相模仿。 我们研究了其所有生成的迭代功能系统,提供$ e $的频谱,并确定$ e $的Hausdorff Dimension和Hausdorff度量,以及包含有限或无限的不同三级代码的$ E $中所有点的集合。

Let $E$ be the self-similar set generated by the {\it iterated function system} {\[ f_0(x)=\frac{x}β,\quad f_1(x)=\frac{x+1}β, \quad f_{β+1}=\frac{x+β+1}β \]}with $β\ge 3$. {Then} $E$ is a self-similar set with complete {overlaps}, i.e., $f_{0}\circ f_{β+1}=f_{1}\circ f_1$, but $E$ is not totally self-similar. We investigate all its generating iterated function systems, give the spectrum of $E$, and determine the Hausdorff dimension and Hausdorff measure of $E$ and of the sets which contain all points in $E$ having finite or infinite different triadic codings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源