论文标题

$ l^1(\ bbb {r})$上微分方程的傅立叶变换和稳定性

Fourier transformation and stability of differential equation on $L^1(\Bbb{R})$

论文作者

Rezaei, H., Zafarasa, Z.

论文摘要

在本文的傅立叶变换的本文中,我们表明,$ n $ th订单的每个线性微分方程在$ l^1(\ bbb {r})$中都有一个解决方案,该方程在$ \ bbb {r} \ setMinus \ {0 \} $中是无限差的。此外,研究了此类方程式在$ l^1(\ bbb {r})$上的hyers-ulam稳定性。

In the present paper by the Fourier transform we show that every linear differential equations of $n$-th order has a solution in $L^1(\Bbb{R})$ which is infinitely differentiable in $\Bbb{R} \setminus \{0\}$. Moreover the Hyers-Ulam stability of such equations on $L^1(\Bbb{R})$ is investigated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源