论文标题
Lipschitz热量功能的可移动奇异性随时间变化的域
Removable singularities for Lipschitz caloric functions in time varying domains
论文作者
论文摘要
在本文中,我们研究了常规$(1,1/2)$ - LIPSCHITZ的可移动奇异性,及时变化的域。我们引入了相关的Lipschitz热量能力,并研究了其度量和几何特性,以及与奇异积分的$ l^2 $有界性的联系,其内核是由热方程的基本解决方案的梯度给出的。
In this paper we study removable singularities for regular $(1,1/2)$-Lipschitz solutions of the heat equation in time varying domains. We introduce an associated Lipschitz caloric capacity and we study its metric and geometric properties and the connection with the $L^2$ boundedness of the singular integral whose kernel is given by the gradient of the fundamental solution of the heat equation.