论文标题

CNN如何使用图像位置进行分割?

How Can CNNs Use Image Position for Segmentation?

论文作者

Murase, Rito, Suganuma, Masanori, Okatani, Takayuki

论文摘要

卷积是一个模棱两可的操作,图像位置不会影响其结果。最近的一项研究表明,在CNN卷积层中使用的零衬底为CNN提供了位置信息。该研究进一步声称,该职位信息可以准确推断几项任务,例如对象识别,细分等。但是,研究实验的设计存在技术问题,因此索赔的正确性尚未得到验证。此外,绝对图像位置对于分割自然图像可能不是必不可少的,其中目标对象将出现在任何图像位置。在这项研究中,我们研究了位置信息是如何用于分割任务的。为此,我们考虑{\ em位置编码}(PE),该}(PE)将嵌入图像位置的通道嵌入到输入图像中,并将PE与多种填充方法进行比较。考虑到自然图像的上述性质,我们选择了医学图像分割任务,其中绝对位置似乎相对重要,因为(不同患者的)器官(在不同的患者中)被捕获相似的大小和位置。我们从实验结果中得出了不同的结论。在某些情况下,该位置编码肯定有效,但是对于我们认为的分割任务来说,绝对图像位置可能并不那么重要。

Convolution is an equivariant operation, and image position does not affect its result. A recent study shows that the zero-padding employed in convolutional layers of CNNs provides position information to the CNNs. The study further claims that the position information enables accurate inference for several tasks, such as object recognition, segmentation, etc. However, there is a technical issue with the design of the experiments of the study, and thus the correctness of the claim is yet to be verified. Moreover, the absolute image position may not be essential for the segmentation of natural images, in which target objects will appear at any image position. In this study, we investigate how positional information is and can be utilized for segmentation tasks. Toward this end, we consider {\em positional encoding} (PE) that adds channels embedding image position to the input images and compare PE with several padding methods. Considering the above nature of natural images, we choose medical image segmentation tasks, in which the absolute position appears to be relatively important, as the same organs (of different patients) are captured in similar sizes and positions. We draw a mixed conclusion from the experimental results; the positional encoding certainly works in some cases, but the absolute image position may not be so important for segmentation tasks as we think.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源