论文标题

建模高维单元 - 根部时间序列

Modeling High-Dimensional Unit-Root Time Series

论文作者

Gao, Zhaoxing, Tsay, Ruey S.

论文摘要

本文提出了一个新的过程,通过假设$ p $维单位 - 根 - 根部过程是对一组单位 - 根 - 根部 - 固定的常见因素的非影响线性转换,这是一组固定的常见因素,这是一组动态依赖性的,并且某些特殊的白色噪声成分。对于固定组件,我们假设因子过程捕获了时间依赖性,并且特质白噪声系列与因子共同解释了横截面依赖性。非单位线性载荷空间的估计分两个步骤进行。首先,我们使用数据的非负定矩阵的本域分析,将单位根过程与固定过程分开,并修改方法来指定单位根的数量。然后,我们采用另一项特征分析和预测的主成分分析来识别固定的常见因素和白噪声系列。我们提出了一个新的程序,以指定白噪声系列的数量,因此,固定的共同因素的数量为固定方法和差异$ p $作为样本尺寸$ n $的增加而建立拟议方法的渐近特性,并使用模拟和一个真实的示例来证明有限样本中提出的方法的性能。我们还将我们的方法与文献中有关提取因子的预测能力的一些常用方法进行了比较,并发现所提出的方法在台湾的508维PM $ _ {2.5} $系列的样本外预测中表现良好。

This paper proposes a new procedure to build factor models for high-dimensional unit-root time series by postulating that a $p$-dimensional unit-root process is a nonsingular linear transformation of a set of unit-root processes, a set of stationary common factors, which are dynamically dependent, and some idiosyncratic white noise components. For the stationary components, we assume that the factor process captures the temporal-dependence and the idiosyncratic white noise series explains, jointly with the factors, the cross-sectional dependence. The estimation of nonsingular linear loading spaces is carried out in two steps. First, we use an eigenanalysis of a nonnegative definite matrix of the data to separate the unit-root processes from the stationary ones and a modified method to specify the number of unit roots. We then employ another eigenanalysis and a projected principal component analysis to identify the stationary common factors and the white noise series. We propose a new procedure to specify the number of white noise series and, hence, the number of stationary common factors, establish asymptotic properties of the proposed method for both fixed and diverging $p$ as the sample size $n$ increases, and use simulation and a real example to demonstrate the performance of the proposed method in finite samples. We also compare our method with some commonly used ones in the literature regarding the forecast ability of the extracted factors and find that the proposed method performs well in out-of-sample forecasting of a 508-dimensional PM$_{2.5}$ series in Taiwan.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源