论文标题

带有圆锥形奇异性的曲奇sasakiEinstein指标

Toric Sasaki-Einstein metrics with conical singularities

论文作者

de Borbon, Martin, Legendre, Eveline

论文摘要

我们表明,任何带有光滑紧凑横截面的曲奇kähler锥都承认了一个沿着圆环的圆锥形奇异的卡拉比野锥指标。该家族用Reeb锥参数化,并且角度根据Reeb矢量场明确给出。结果是最佳的,从某种意义上说,任何沿着圆环的分裂沿圆锥形奇异性(和其他地方平滑)属于圆锥形奇异性的曲面calabi-yau锥度属于这个家族。我们还提供了例子,并根据Sasaki-Einstein指标来解释我们的结果。

We show that any toric Kähler cone with smooth compact cross-section admits a family of Calabi-Yau cone metrics with conical singularities along its toric divisors. The family is parametrized by the Reeb cone and the angles are given explicitly in terms of the Reeb vector field. The result is optimal, in the sense that any toric Calabi-Yau cone metric with conical singularities along the toric divisor (and smooth elsewhere) belongs to this family. We also provide examples and interpret our results in terms of Sasaki-Einstein metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源