论文标题
手性诱导的自旋选择性作为自发的互换顺序
Chiral Induced Spin Selectivity as a Spontaneous Intertwined Order
论文作者
论文摘要
手性诱导的自旋选择性(CISS)描述了手性分子的有效自旋滤波。这种现象导致对量子旋转的纳米级操纵,自从近二十年前的发现以来,它在旋转和量子计算上有很有希望的应用。但是,对于所需的自旋轨道相互作用(SOI)强度出乎意料的很大,其基本机制仍然神秘。在这里,我们报告了一种用于CISS的多轨理论,其中有效的SOI来自由多体相关引起的电子孔配对的自发形成。这种机制可产生强大的SOI,达到数十Milielectronvolts的顺序,这些SOI可以支持在室温下在CISS中观察到的大型自旋极化。我们理论的一种中心成分是价和传导带的渗透功能,分别对应于分子伸长方向周围空间旋转对称性的一维表示。当带隙增加时,发现诱导的SOI强度会降低。我们的理论可以为搜索具有CISS效应的其他分子提供重要的指导。
Chiral induced spin selectivity (CISS) describes efficient spin filtering by chiral molecules. This phenomenon has led to nanoscale manipulation of quantum spins with promising applications to spintronics and quantum computing, since its discovery nearly two decades ago. However, its underlying mechanism still remains mysterious for the required spin-orbit interaction (SOI) strength is unexpectedly large. Here we report a multi-orbital theory for CISS, where an effective SOI emerges from spontaneous formation of electron-hole pairing caused by many-body correlation. This mechanism produces a strong SOI to the order of tens of milielectronvolts which could support the large spin polarization observed in CISS at room temperature. One central ingredient of our theory is the Wannier functions of the valence and conduction bands correspond respectively to one- and two-dimensional representation of the spatial rotation symmetry around the molecule elongation direction. The induced SOI strength is found to decrease when the band gap increases. Our theory may provide important guidance for searching other molecules with CISS effects.