论文标题

使用加速度计和机器学习开发滑板技巧分类器

Development of a skateboarding trick classifier using accelerometry and machine learning

论文作者

Corrêa, Nicholas Kluge, de Lima, Julio Cesar Marques, Russomano, Thais, Santos, Marlise Araujo dos

论文摘要

简介:滑板是巴西最受欢迎的文化之一,拥有超过850万滑板运动员。如今,街头滑冰的学科在其他更古典的运动中获得了认可,并在东京2020年夏季奥运会上首次亮相。这项研究旨在探索在滑板技巧检测中使用惯性测量单元(IMU)的最新方法,并使用监督的机器学习和人工神经网络(ANN)开发新的分类方法。方法:有关滑板运动检测的最新知识,用于通过信号建模来生成543个人工加速信号,对应于181个平坦地面技巧分为五个类别(Nollie,Nshov,Flip,Flip,Shov,Shov,Ollie)。分类器由由三层创建的多层馈送神经网络和一个有监督的学习算法(反向传播)组成。结果:专门针对每个测得的加速轴训练的ANN的使用,导致错误百分比低于0.05%,其计算效率使实时应用成为可能。结论:假设分类器是正确构造和培训的,并且可以正确预处理加速度信号,那么机器学习可能是对滑板平面式窍门进行分类的有用技术。

Introduction: Skateboarding is one of the most popular cultures in Brazil, with more than 8.5 million skateboarders. Nowadays, the discipline of street skating has gained recognition among other more classical sports and awaits its debut at the Tokyo 2020 Summer Olympic Games. This study aimed to explore the state-of-the-art for inertial measurement unit (IMU) use in skateboarding trick detection, and to develop new classification methods using supervised machine learning and artificial neural networks (ANN). Methods: State-of-the-art knowledge regarding motion detection in skateboarding was used to generate 543 artificial acceleration signals through signal modeling, corresponding to 181 flat ground tricks divided into five classes (NOLLIE, NSHOV, FLIP, SHOV, OLLIE). The classifier consisted of a multilayer feed-forward neural network created with three layers and a supervised learning algorithm (backpropagation). Results: The use of ANNs trained specifically for each measured axis of acceleration resulted in error percentages inferior to 0.05%, with a computational efficiency that makes real-time application possible. Conclusion: Machine learning can be a useful technique for classifying skateboarding flat ground tricks, assuming that the classifiers are properly constructed and trained, and the acceleration signals are preprocessed correctly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源