论文标题

stinet:用于行人检测和轨迹预测的时空相互作用网络

STINet: Spatio-Temporal-Interactive Network for Pedestrian Detection and Trajectory Prediction

论文作者

Zhang, Zhishuai, Gao, Jiyang, Mao, Junhua, Liu, Yukai, Anguelov, Dragomir, Li, Congcong

论文摘要

检测行人并预测未来的轨迹是许多应用程序(例如自动驾驶)的关键任务。先前的方法要么将检测和预测视为单独的任务,要么只是在检测器顶部添加轨迹回归头。在这项工作中,我们提出了一个新颖的端到端两阶段网络:时空相互作用网络(stinet)。除了行人的3D几何建模外,我们还为每个行人的时间信息建模。为此,我们的方法预测了第一阶段的当前和过去位置,因此每个行人都可以跨帧链接,并且可以在第二阶段捕获全面的时空信息。此外,我们对对象之间的相互作用与相互作用图建模,以在相邻对象之间收集信息。在LYFT数据集和最近发布的大规模Waymo开放数据集上进行对象检测和未来轨迹预测验证了所提出方法的有效性。对于Waymo Open数据集,我们为行人提供了80.73的鸟眼(BEV)检测AP,轨迹预测的平均位移误差(ADE)为33.67厘米,为这两个任务建立了最新的工作。

Detecting pedestrians and predicting future trajectories for them are critical tasks for numerous applications, such as autonomous driving. Previous methods either treat the detection and prediction as separate tasks or simply add a trajectory regression head on top of a detector. In this work, we present a novel end-to-end two-stage network: Spatio-Temporal-Interactive Network (STINet). In addition to 3D geometry modeling of pedestrians, we model the temporal information for each of the pedestrians. To do so, our method predicts both current and past locations in the first stage, so that each pedestrian can be linked across frames and the comprehensive spatio-temporal information can be captured in the second stage. Also, we model the interaction among objects with an interaction graph, to gather the information among the neighboring objects. Comprehensive experiments on the Lyft Dataset and the recently released large-scale Waymo Open Dataset for both object detection and future trajectory prediction validate the effectiveness of the proposed method. For the Waymo Open Dataset, we achieve a bird-eyes-view (BEV) detection AP of 80.73 and trajectory prediction average displacement error (ADE) of 33.67cm for pedestrians, which establish the state-of-the-art for both tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源