论文标题
学习预测和控制的稳定模型
Learning Stable Models for Prediction and Control
论文作者
论文摘要
本文展示了对数据驱动的Koopman运营商施加稳定性的好处。使用算法\ cite {mamakoukas_stablelds2020}来实现稳定的Koopman运算符(DISKO)的数据驱动识别,该算法\ cite {Mamakoukas_stablelds2020}计算最小s量矩阵解决方案最近的\ textIt {stable}矩阵解决方案。作为第一个结果,我们得出了一个公式,该公式描述了对任意时间步长的Koopman表示的预测误差,这表明稳定性约束可以提高长时间视野的预测准确性。作为第二个结果,我们确定了满足基础非线性系统稳定性所需的Koopman运算符的正式条件。作为第三个结果,我们从稳定的数据驱动的Koopman操作员中得出了为非线性系统构建Lyapunov函数的形式条件,我们用来验证数据中的稳定控制。最后,我们通过使用摆和二次运动和实验使用推动器滑行系统的模拟来证明磁盘在预测和控制中的好处。该论文与视频相辅相成:\ url {https://sites.google.com/view/learning-stable-koopman}。
This paper demonstrates the benefits of imposing stability on data-driven Koopman operators. The data-driven identification of stable Koopman operators (DISKO) is implemented using an algorithm \cite{mamakoukas_stableLDS2020} that computes the nearest \textit{stable} matrix solution to a least-squares reconstruction error. As a first result, we derive a formula that describes the prediction error of Koopman representations for an arbitrary number of time steps, and which shows that stability constraints can improve the predictive accuracy over long horizons. As a second result, we determine formal conditions on basis functions of Koopman operators needed to satisfy the stability properties of an underlying nonlinear system. As a third result, we derive formal conditions for constructing Lyapunov functions for nonlinear systems out of stable data-driven Koopman operators, which we use to verify stabilizing control from data. Lastly, we demonstrate the benefits of DISKO in prediction and control with simulations using a pendulum and a quadrotor and experiments with a pusher-slider system. The paper is complemented with a video: \url{https://sites.google.com/view/learning-stable-koopman}.