论文标题

社交发射:一个深层顺序模型,具有网络尺度推荐系统的社交信息

SocialTrans: A Deep Sequential Model with Social Information for Web-Scale Recommendation Systems

论文作者

Chen, Qiaoan, Gu, Hao, Yi, Lingling, Lin, Yishi, He, Peng, Chen, Chuan, Song, Yangqiu

论文摘要

在社交网络平台上,用户的行为是基于他/她的个人利益,或者受他/她的朋友的影响。在文献中,通常可以对用户的个人喜好或其受社会影响的偏好进行建模。在本文中,我们为社交建议提供了一种新颖的深度学习模型,以整合这两种偏好。社会发行由三个模块组成。第一个模块基于多层变压器,用于建模用户的个人喜好。第二个模块是多层图注意神经网络(GAT),用于对社交网络中朋友之间的社会影响力进行建模。最后一个模块合并了用户的个人喜好,并受到社会影响的偏好,以提出建议。我们的模型可以有效地拟合大规模数据,我们将社会侵犯部署到了中国的主要文章建议系统中。对三个数据集的实验验证了我们的模型的有效性,并表明它的表现优于最先进的社会推荐方法。

On social network platforms, a user's behavior is based on his/her personal interests, or influenced by his/her friends. In the literature, it is common to model either users' personal preference or their socially influenced preference. In this paper, we present a novel deep learning model SocialTrans for social recommendations to integrate these two types of preferences. SocialTrans is composed of three modules. The first module is based on a multi-layer Transformer to model users' personal preference. The second module is a multi-layer graph attention neural network (GAT), which is used to model the social influence strengths between friends in social networks. The last module merges users' personal preference and socially influenced preference to produce recommendations. Our model can efficiently fit large-scale data and we deployed SocialTrans to a major article recommendation system in China. Experiments on three data sets verify the effectiveness of our model and show that it outperforms state-of-the-art social recommendation methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源