论文标题

使用物理学限制学习对粘弹性材料的反向建模

Inverse Modeling of Viscoelasticity Materials using Physics Constrained Learning

论文作者

Xu, Kailai, Tartakovsky, Alexandre M., Burghardt, Jeff, Darve, Eric

论文摘要

我们提出了一种使用神经网络对粘弹性材料进行建模的新方法,该方法捕获速率依赖性和非线性组成关系。但是,神经网络的输入和输出并不是直接观察的,因此,具有针对神经网络的输入输出对的常见训练技术是不适用的。为此,我们开发了一种新型的计算方法来校准参数并从间接位移数据中学习基于神经网络的粘弹性材料的本构构型在多物理相互作用的背景下。我们表明,有限的位移数据具有足够的信息来量化粘弹性行为。我们制定了逆计算---从观察到的位移数据中对粘弹性属性进行建模 - 作为PDE受限的优化问题,并使用基于梯度的优化方法最小化了错误函数。梯度是通过自动分化和物理受约束学习的组合来计算的。通过地质力学和多孔媒体运输中的许多基准问题证明了我们方法的有效性。

We propose a novel approach to model viscoelasticity materials using neural networks, which capture rate-dependent and nonlinear constitutive relations. However, inputs and outputs of the neural networks are not directly observable, and therefore common training techniques with input-output pairs for the neural networks are inapplicable. To that end, we develop a novel computational approach to both calibrate parametric and learn neural-network-based constitutive relations of viscoelasticity materials from indirect displacement data in the context of multi-physics interactions. We show that limited displacement data hold sufficient information to quantify the viscoelasticity behavior. We formulate the inverse computation---modeling viscoelasticity properties from observed displacement data---as a PDE-constrained optimization problem and minimize the error functional using a gradient-based optimization method. The gradients are computed by a combination of automatic differentiation and physics constrained learning. The effectiveness of our method is demonstrated through numerous benchmark problems in geomechanics and porous media transport.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源