论文标题

放松的Mumford-Shah颜色和多相图像分割的各向异性和各向同性总变化的加权差异

A Weighted Difference of Anisotropic and Isotropic Total Variation for Relaxed Mumford-Shah Color and Multiphase Image Segmentation

论文作者

Bui, Kevin, Park, Fredrick, Lou, Yifei, Xin, Jack

论文摘要

在一类分段构图像分割模型中,我们建议将各向异性和各向同性总变化(AITV)的加权差异合并,以使图像中的分区边界正规化。特别是,我们替换了拟议的AITV中Chan-Vese分割模型和模糊区域竞争模型中的总变异正则化。为了处理AITV的非凸性性质,我们应用了Convex算法(DCA),其中可以通过LinesEarch使用Primal Dual Hybrid渐变方法将子问题最小化。分析了DCA方案的收敛性。另外,讨论了对彩色图像分割的概括。在数值实验中,我们将所提出的模型与经典凸方法和各种图像上的两阶段分割方法(平滑然后进行阈值)进行了比较,这表明我们的模型在图像分割方面有效,并且相对于冲动噪声有鲁棒。

In a class of piecewise-constant image segmentation models, we propose to incorporate a weighted difference of anisotropic and isotropic total variation (AITV) to regularize the partition boundaries in an image. In particular, we replace the total variation regularization in the Chan-Vese segmentation model and a fuzzy region competition model by the proposed AITV. To deal with the nonconvex nature of AITV, we apply the difference-of-convex algorithm (DCA), in which the subproblems can be minimized by the primal-dual hybrid gradient method with linesearch. The convergence of the DCA scheme is analyzed. In addition, a generalization to color image segmentation is discussed. In the numerical experiments, we compare the proposed models with the classic convex approaches and the two-stage segmentation methods (smoothing and then thresholding) on various images, showing that our models are effective in image segmentation and robust with respect to impulsive noises.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源