论文标题
基于光子晶体的超敏感干涉传感器,空间分辨率高达1 nm
Photonic Crystal Based Ultra-Sensitive Interferometric Sensor with Spatial Resolution up to 1 nm
论文作者
论文摘要
我们报告了一个非常高的精度干涉传感器,分辨率高达〜λ/1024,首次利用了基于中空光子带隙波导的几何形状。由于横向动量振荡现象,在这里通过沿外梁的方向进行完整的转换来测量感应。使用1.32μm的源和7.25μm的核心宽度,即使在核心宽度中的较小变化约为1 nm上,也获得了完整的切换周期。使用空心核心光子带隙波导,talbot效应,初始阶段的复兴,横向动量中的振荡以及多模式干涉用作设计的骨干。基于光子晶体的超敏感多模式干涉传感器肯定会在基于干涉仪的传感技术方面开设范式转移,该技术朝向光子传感/开关和相关的精确测量系统中的设备级应用。
We report a very high precision interferometric sensor with resolution up to ~λ/1024, exploiting hollow photonic bandgap waveguide-based geometry for the first time. Here sensing has been measured by a complete switching in the direction of the outgoing beam, owing to transverse momentum oscillation phenomena. Using a 1.32 μm source and core-width of 7.25 μm, a complete switching cycle is obtained even due to a small change of ~1 nm in the core-width. Using hollow-core photonic bandgap waveguide, Talbot effect, revivals of the initial phase, oscillation in the transverse momentum along with multi-mode interference served as the backbone of the design. The ultra-sensitive multi-mode interferometric sensor based on photonic crystals will certainly open up a paradigm shift in interferometer-based sensing technologies toward device-level applications in photonic sensing/switching and related precision measurement systems.