论文标题
通过耦合可扩展的贝叶斯稳定张量分解模型的非旋转交通拥堵检测
Non-recurrent Traffic Congestion Detection with a Coupled Scalable Bayesian Robust Tensor Factorization Model
论文作者
论文摘要
非电流交通拥堵(NRTC)通常会给通勤者带来意外的延误。因此,至关重要的是,以实时方式准确检测和识别NRTC。道路交通探测器和循环探测器的进步为研究人员提供了大规模的多变量时间空间流量数据,从而可以对NRTC进行深入研究。但是,构建一个分析框架仍然是一项艰巨的任务,可以有效地表示和利用多变量交通信息的自然时空结构特性,以更好地理解和检测NRTC。在本文中,我们提出了一个基于耦合可伸缩贝叶斯稳健张量分解(耦合SBRTF)的新型无分析训练框架。该框架可以通过共享相似或相同的稀疏结构来融合多变量流量数据,包括交通流量,道路速度和占用率。而且,它自然地捕获了通过张量分解流量数据的高维空间结构特性。它的条目揭示了NRTC的分布和幅度,框架指南针的共享稀疏结构足以充分有关NRTC的信息。尽管框架的低排放部分表示一般预期的交通状况作为辅助产品的分布。现实世界流量数据的实验结果表明,该方法的表现优于贝叶斯强大的主成分分析(耦合BRPCA),秩稀疏张量分解(RSTD)和标准正常偏差(SND),以检测NRTC。当仅利用工作日的流量数据时,提出的方法的性能更好,因此可以为每日通勤者提供更精确的NRTC估计。
Non-recurrent traffic congestion (NRTC) usually brings unexpected delays to commuters. Hence, it is critical to accurately detect and recognize the NRTC in a real-time manner. The advancement of road traffic detectors and loop detectors provides researchers with a large-scale multivariable temporal-spatial traffic data, which allows the deep research on NRTC to be conducted. However, it remains a challenging task to construct an analytical framework through which the natural spatial-temporal structural properties of multivariable traffic information can be effectively represented and exploited to better understand and detect NRTC. In this paper, we present a novel analytical training-free framework based on coupled scalable Bayesian robust tensor factorization (Coupled SBRTF). The framework can couple multivariable traffic data including traffic flow, road speed, and occupancy through sharing a similar or the same sparse structure. And, it naturally captures the high-dimensional spatial-temporal structural properties of traffic data by tensor factorization. With its entries revealing the distribution and magnitude of NRTC, the shared sparse structure of the framework compasses sufficiently abundant information about NRTC. While the low-rank part of the framework, expresses the distribution of general expected traffic condition as an auxiliary product. Experimental results on real-world traffic data show that the proposed method outperforms coupled Bayesian robust principal component analysis (coupled BRPCA), the rank sparsity tensor decomposition (RSTD), and standard normal deviates (SND) in detecting NRTC. The proposed method performs even better when only traffic data in weekdays are utilized, and hence can provide more precise estimation of NRTC for daily commuters.