论文标题
在非炎性旋转轨道耦合的稳定隧道中控制稳定的隧道
Controlling stable tunneling in a non-Hermitian spin-orbit coupled bosonic junction
论文作者
论文摘要
在本文中,我们研究了如何应用定期驾驶场来控制非旋转轨道耦合的玻色孔双孔系统中稳定的自旋隧道。通过高频近似,我们获得了分析的浮子溶液及其相关的准能,从而构建了耗散性旋转轨道耦合的骨系统的一般非浮力溶液。基于对Floquet胶质谱系的详细分析,在分析和数值上研究了系统参数的深刻影响以及周期性驾驶场对自旋依赖性隧道稳定性的稳定性,以供两个井之间的平衡和不平衡的增益损失。在平衡的增益和损失下,我们发现稳定的旋转式隧穿被增益强度的提高而被抑制。当Zeeman场强与周期性驾驶频率$ω/ω$的比率甚至是\ emph {contunuled}稳定参数区域的比率。但是,当$ω/ω$奇怪时,只有\ emph {iNCETE}稳定参数区域。在不平衡的增益和损失下,无论$ω/ω$偶数还是奇怪,我们都可以为存在稳定的旋转隧道获得参数平衡条件。该结果对于在非铁旋转轨道耦合系统中控制稳定的自旋转运的实验可能很有用。
In this paper, we study how to apply a periodic driving field to control stable spin tunneling in a non-Hermitian spin-orbit coupled bosonic double-well system. By means of a high-frequency approximation, we obtain the analytical Floquet solutions and their associated quasienergies and thus construct the general non-Floquet solutions of the dissipative spin-orbit coupled bosonic system. Based on detailed analysis of the Floquet quasienergy spectrum, the profound effect of system parameters and the periodic driving field on the stability of spin-dependent tunneling is investigated analytically and numerically for both balanced and unbalanced gain-loss between two wells. Under balanced gain and loss, we find that the stable spin-flipping tunneling is preferentially suppressed with the increase of gain-loss strength. When the ratio of Zeeman field strength to periodic driving frequency $Ω/ω$ is even, there is a possibility that \emph{continuous} stable parameter regions will exist. When $Ω/ω$ is odd, nevertheless, only \emph{discrete} stable parameter regions are found. Under unbalanced gain and loss, whether $Ω/ω$ is even or odd, we can get parametric equilibrium conditions for the existence of stable spin tunneling. The results could be useful for the experiments of controlling stable spin transportation in a non-Hermitian spin-orbit coupled system.