论文标题
无机钙钛矿CSPBBR $ _3 $的高分辨率内同步X射线研究:新的对称分配和结构相变
High-Resolution In-situ Synchrotron X-ray Studies of Inorganic Perovskite CsPbBr$_3$: New Symmetry Assignments and Structural Phase Transitions
论文作者
论文摘要
由于其高能量转换效率,正在研究Perovskite光伏ABX $ _3 $系统,并且当前重点放在纯无机系统上。在这项工作中,同步加速器单晶衍射测量与第二个谐波生成测量相结合,揭示了CSPBBR $ _3 $中室温以下的反转对称性。通过成对分布函数和X射线吸收的局部结构分析进行精细结构方法,以确定局部排序,原子对相关性和相位演变在广泛的温度下。当前接受的CSPBBR $ _3 $的空间组分配是不正确的,以深刻影响物理特性。批量结构获得了新的作业:$ im $$ \ bar {3} $($ \ sim $ 410 k),$ p $ 2 $ _1 $/$ m $(在$ \ sim $ 300 k和$ 300 k和$ \ sim $ 410 k)和极性组$ pm $(以下$ \ sim $ \ sim $ 300 k)。新观察到的结构扭曲存在于散装结构中,与先前的光致发光和拉曼测量值的期望一致。高压测量结果显示了多个低压阶段,其中之一是在环境压力下作为亚稳态相存在。这项工作应有助于指导钙钛矿光伏社区的研究,以更好地控制操作条件下的结构,并进一步改善运输和光学特性。
Perovskite photovoltaic ABX$_3$ systems are being studied due to their high energy-conversion efficiencies with current emphasis placed on pure inorganic systems. In this work, synchrotron single-crystal diffraction measurements combined with second harmonic generation measurements reveal the absence of inversion symmetry below room temperature in CsPbBr$_3$. Local structural analysis by pair distribution function and X-ray absorption fine structure methods are performed to ascertain the local ordering, atomic pair correlations, and phase evolution in a broad range of temperatures. The currently accepted space group assignments for CsPbBr$_3$ are found to be incorrect in a manner that profoundly impacts physical properties. New assignments are obtained for the bulk structure: $Im$$\bar{3}$ (above $\sim$ 410 K), $P$2$_1$/$m$ (between $\sim$ 300 K and $\sim$ 410 K), and the polar group $Pm$ (below $\sim$ 300 K), respectively. The newly observed structural distortions exist in the bulk structure consistent with the expectation of previous photoluminescence and Raman measurements. High-pressure measurements reveal multiple low-pressure phases, one of which exists as a metastable phase at ambient pressure. This work should help guide research in the perovskite photovoltaic community to better control the structure under operational conditions and further improve transport and optical properties.