论文标题
通过笔陷阱质谱法检测亚稳态电子状态
Detection of metastable electronic states by Penning trap mass spectrometry
论文作者
论文摘要
最新的光学时钟实现了$ 10^{ - 18} $及以下的分数精度,并在无线电频率陷阱中使用光学晶格或单个离子中的原子集合。新颖时钟的有前途的候选者是高度充电的离子(HCI)和核转变,这些离子对外部扰动不敏感,并达到超出光学范围之外的波长,现在可以访问频率梳子。但是,不足的精确原子结构计算仍然阻碍了HCI中合适的过渡的识别。在这里,我们通过测量RE的地面的质量差和激发态,在HCI中发现了长期寿命的亚稳态电子状态,这是第一个非破坏性的,直接测定电子激发能。该结果与我们的高级计算一致,我们用具有相同电子配置的OS离子确认它们。我们使用了高精度的PENNING-TRAP质谱仪Pentatrap,它同步使用五个单独的陷阱来同时进行质量测量。在重度原子制度中前所未有的,可以确定$ΔR= 1 \ cdot 10^{ - 11} $的精度,以$ΔR= 1 \ cdot 10^{ - 11} $确定离子的回旋频率比$ r $。一生约为130天,潜在的软X射线频率参考$ν= 4.86 \ cdot 10^{16} \,\ text {hz} $仅具有$δν\ cdot 10^{ - 8} { - 8} \,\,\,\,\ fext { ($ q = \fracν{Δν} \大约10^{24} $)在实验中见过。我们的低不确定性使搜索更多的HCI软X射线时钟过渡,这是在迄今未经探索的边界中对基本物理学的有希望的精确研究所需的。
State-of-the-art optical clocks achieve fractional precisions of $10^{-18}$ and below using ensembles of atoms in optical lattices or individual ions in radio-frequency traps. Promising candidates for novel clocks are highly charged ions (HCIs) and nuclear transitions, which are largely insensitive to external perturbations and reach wavelengths beyond the optical range, now becoming accessible to frequency combs. However, insufficiently accurate atomic structure calculations still hinder the identification of suitable transitions in HCIs. Here, we report on the discovery of a long-lived metastable electronic state in a HCI by measuring the mass difference of the ground and the excited state in Re, the first non-destructive, direct determination of an electronic excitation energy. This result agrees with our advanced calculations, and we confirmed them with an Os ion with the same electronic configuration. We used the high-precision Penning-trap mass spectrometer PENTATRAP, unique in its synchronous use of five individual traps for simultaneous mass measurements. The cyclotron frequency ratio $R$ of the ion in the ground state to the metastable state could be determined to a precision of $δR=1\cdot 10^{-11}$, unprecedented in the heavy atom regime. With a lifetime of about 130 days, the potential soft x-ray frequency reference at $ν=4.86\cdot 10^{16}\,\text{Hz}$ has a linewidth of only $Δν\approx 5\cdot 10^{-8}\,\text{Hz}$, and one of the highest electronic quality factor ($Q=\fracν{Δν}\approx 10^{24}$) ever seen in an experiment. Our low uncertainty enables searching for more HCI soft x-ray clock transitions, needed for promising precision studies of fundamental physics in a thus far unexplored frontier.