论文标题

通过自适应操纵迹线提取网络进行假脸检测

Fake face detection via adaptive manipulation traces extraction network

论文作者

Guo, Zhiqing, Yang, Gaobo, Chen, Jiyou, Sun, Xingming

论文摘要

随着面部图像操纵(FIM)技术(例如Face2face和Deepfake)的扩散,更多的假面图像在互联网上传播,这给公众的信心带来了严重的挑战。面部图像伪造的检测在暴露特定的FIM方面取得了长足的进展,但是在复杂的情况下,诸如进一步的压缩,模糊,缩放等的复杂场景下,仍然缺乏可靠的假面探测器,因为相对固定的结构,卷积神经网络(CNN)倾向于学习图像内容表示。但是,CNN应学习图像取证任务的细微操纵迹线。因此,我们提出了一种自适应操纵轨迹提取网络(AMTEN),该网络是抑制图像内容并突出操纵轨迹的预处理。 Amten利用自适应卷积层来预测图像中的操作轨迹,后来在后续层中重复使用,以通过在后传播通行期间更新权重来最大化操纵伪像。假面检测器,即Amtennet,是通过与CNN集成的。实验结果证明,所提出的AMTEN实现了理想的预处理。当检测由各种FIM技术产生的假面图像时,Amtennet的平均准确性高达98.52%,这表现优于最先进的作品。当检测具有未知后处理操作的面部图像时,检测器的平均准确度也为95.17%。

With the proliferation of face image manipulation (FIM) techniques such as Face2Face and Deepfake, more fake face images are spreading over the internet, which brings serious challenges to public confidence. Face image forgery detection has made considerable progresses in exposing specific FIM, but it is still in scarcity of a robust fake face detector to expose face image forgeries under complex scenarios such as with further compression, blurring, scaling, etc. Due to the relatively fixed structure, convolutional neural network (CNN) tends to learn image content representations. However, CNN should learn subtle manipulation traces for image forensics tasks. Thus, we propose an adaptive manipulation traces extraction network (AMTEN), which serves as pre-processing to suppress image content and highlight manipulation traces. AMTEN exploits an adaptive convolution layer to predict manipulation traces in the image, which are reused in subsequent layers to maximize manipulation artifacts by updating weights during the back-propagation pass. A fake face detector, namely AMTENnet, is constructed by integrating AMTEN with CNN. Experimental results prove that the proposed AMTEN achieves desirable pre-processing. When detecting fake face images generated by various FIM techniques, AMTENnet achieves an average accuracy up to 98.52%, which outperforms the state-of-the-art works. When detecting face images with unknown post-processing operations, the detector also achieves an average accuracy of 95.17%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源