论文标题
线性机制维持壁湍流的因果
Cause-and-effect of linear mechanisms sustaining wall turbulence
论文作者
论文摘要
尽管湍流具有非线性的性质,但有证据表明,维持壁湍流的一部分能量转移机制可以归因于线性过程。不同的方案源于线性稳定性理论,包括指数稳定性,中性模式,非正常运算符的瞬时增长以及来自时间平均值变化的参数不稳定性等。这些机制,每种机制都有可能导致观察到的湍流结构,植根于理论和概念论点。该流量是遵循的任何或组合,仍然难以捉摸。在这里,我们评估了负责从流动平均平均流量($ \ bf u $)到波动速度($ \ bf u'$)的线性机制。我们根据干预措施使用因果分析。这是通过在低雷诺数下的湍流通道流的直接数值模拟来实现的,其中的能量转移从$ \ bf u $到$ \ bf u'$受到限制,以阻止目标线性机制。我们表明,瞬态生长足以维持逼真的壁湍流。当指数不稳定性,中性模式和平均流量的参数不稳定性被抑制时,自我维持的湍流被持续存在。我们进一步表明,瞬态生长的关键组成部分是由基本流量的跨度变化引起的ORR/PUSH-ORER机制。最后,我们证明了安排了各种冷冻$ \ bf U $的模拟集合,以便只有瞬态增长才能活跃,可以忠实地代表从$ \ bf u $到$ \ bf u'$的能源转移,就像现实的湍流一样。我们的方法提供了从$ \ bf u $到$ \ bf u'$在完全非线性系统中的线性能量注入机制的直接因果评估,并简化了自我维持的壁湍流的概念模型。
Despite the nonlinear nature of turbulence, there is evidence that part of the energy-transfer mechanisms sustaining wall turbulence can be ascribed to linear processes. The different scenarios stem from linear stability theory and comprise exponential instabilities, neutral modes, transient growth from non-normal operators, and parametric instabilities from temporal mean-flow variations, among others. These mechanisms, each potentially capable of leading to the observed turbulence structure, are rooted in theoretical and conceptual arguments. Whether the flow follows any or a combination of them remains elusive. Here, we evaluate the linear mechanisms responsible for the energy transfer from the streamwise-averaged mean-flow ($\bf U$) to the fluctuating velocities ($\bf u'$). We use cause-and-effect analysis based on interventions. This is achieved by direct numerical simulation of turbulent channel flows at low Reynolds number, in which the energy transfer from $\bf U$ to $\bf u'$ is constrained to preclude a targeted linear mechanism. We show that transient growth is sufficient for sustaining realistic wall turbulence. Self-sustaining turbulence persists when exponential instabilities, neutral modes, and parametric instabilities of the mean flow are suppressed. We further show that a key component of transient growth is the Orr/push-over mechanism induced by spanwise variations of the base flow. Finally, we demonstrate that an ensemble of simulations with various frozen-in-time $\bf U$ arranged so that only transient growth is active, can faithfully represent the energy transfer from $\bf U$ to $\bf u'$ as in realistic turbulence. Our approach provides direct cause-and-effect evaluation of the linear energy-injection mechanisms from $\bf U$ to $\bf u'$ in the fully nonlinear system and simplifies the conceptual model of self-sustaining wall turbulence.