论文标题

通过可区分的模拟来识别机械模型

Identifying Mechanical Models through Differentiable Simulations

论文作者

Song, Changkyu, Boularias, Abdeslam

论文摘要

本文提出了一种通过一系列非划理动作来操纵未知对象的新方法,该动作将对象从其初始配置转移到平坦表面上给定的目标配置。所提出的方法利用可区分物理模型的最新进展来识别受操纵对象的未知机械性能,例如惯性矩阵,摩擦系数和作用于对象上的外部力。为此,这项工作采用了最近提出的用于二维物体的可区分物理引擎,并扩展了三维空间中的部队。提出的模型标识技术分析地计算对象的预测姿势与其实际观察到的姿势之间的距离梯度,并利用该梯度来搜索减少现实差距的机械性能的值。使用真实对象使用真实机器人收集数据的实验表明,所提出的方法可以识别飞出异质物体的机械性能。

This paper proposes a new method for manipulating unknown objects through a sequence of non-prehensile actions that displace an object from its initial configuration to a given goal configuration on a flat surface. The proposed method leverages recent progress in differentiable physics models to identify unknown mechanical properties of manipulated objects, such as inertia matrix, friction coefficients and external forces acting on the object. To this end, a recently proposed differentiable physics engine for two-dimensional objects is adopted in this work and extended to deal forces in the three-dimensional space. The proposed model identification technique analytically computes the gradient of the distance between forecasted poses of objects and their actual observed poses and utilizes that gradient to search for values of the mechanical properties that reduce the reality gap. Experiments with real objects using a real robot to gather data show that the proposed approach can identify the mechanical properties of heterogeneous objects on the fly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源