论文标题

模式指导的自然语言产生

Schema-Guided Natural Language Generation

论文作者

Du, Yuheng, Oraby, Shereen, Perera, Vittorio, Shen, Minmin, Narayan-Chen, Anjali, Chung, Tagyoung, Venkatesh, Anu, Hakkani-Tur, Dilek

论文摘要

基于神经网络的数据到文本自然语言生成(NLG)的方法近年来已广受欢迎,目的是产生自然语言提示,以准确地实现输入含义表示表示。为了促进神经网络模型的培训,研究人员创建了大量的配对话语及其含义表示的数据集。但是,此类数据集的创建是一个艰巨的任务,它们主要由简单的含义表示形式组成,由插槽和值代币组成。这些表示不包括NLG系统在试图概括时可以使用的任何上下文信息,例如域信息和插槽和值的描述。在本文中,我们介绍了模式指导自然语言产生(SG-NLG)的新任务。在这里,目标仍然是生成自然语言提示,但是在SG-NLG中,输入MRS与提供上下文信息的丰富模式配对。为了生成用于SG-NLG的数据集,我们将现有数据集重新使用以进行另一个任务:对话框状态跟踪,其中包括一个跨越多个不同属性的大型且丰富的模式,包括有关域,用户意图和插槽描述的信息。我们在此数据集中训练不同的神经自然语言生成的最先进模型,并表明,在许多情况下,包括丰富的模式信息允许我们的模型在语义和多样性方面产生更高质量的输出。我们还进行了比较在可见域与看不见的域上比较模型性能的实验,并提出了人类评估,证明了整体产出质量的高评分。

Neural network based approaches to data-to-text natural language generation (NLG) have gained popularity in recent years, with the goal of generating a natural language prompt that accurately realizes an input meaning representation. To facilitate the training of neural network models, researchers created large datasets of paired utterances and their meaning representations. However, the creation of such datasets is an arduous task and they mostly consist of simple meaning representations composed of slot and value tokens to be realized. These representations do not include any contextual information that an NLG system can use when trying to generalize, such as domain information and descriptions of slots and values. In this paper, we present the novel task of Schema-Guided Natural Language Generation (SG-NLG). Here, the goal is still to generate a natural language prompt, but in SG-NLG, the input MRs are paired with rich schemata providing contextual information. To generate a dataset for SG-NLG we re-purpose an existing dataset for another task: dialog state tracking, which includes a large and rich schema spanning multiple different attributes, including information about the domain, user intent, and slot descriptions. We train different state-of-the-art models for neural natural language generation on this dataset and show that in many cases, including rich schema information allows our models to produce higher quality outputs both in terms of semantics and diversity. We also conduct experiments comparing model performance on seen versus unseen domains, and present a human evaluation demonstrating high ratings for overall output quality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源