论文标题

基于图像的流量分解使用经验小波变换

Image-based flow decomposition using empirical wavelet transform

论文作者

Ren, Jie, Mao, Xuerui, Fu, Song

论文摘要

我们提出了一种基于图像的流动分解,它是由二维(2D)张量经验小波变换(EWT)开发的(Gilles 2013)。这个想法是根据平均的傅立叶支持,以识别空间局部结构的平均支持,分解瞬时流数据或其可视化。所得的EWT模式代表了分解的流量,并且每个元素都占一部分光谱,说明了在原始流中叠加的不同尺度的流体物理学。通过提出的方法,瞬时3D流的分解变得可行,而无需诉诸于其时间序列。示例首先关注喷气羽流与2D尾流之间的相互作用,在那里只有实验性可视化。提出的方法能够将喷气/尾流及其不稳定性分开。然后将分解应用于早期阶段边界层过渡,直接数值模拟提供了完整的数据集。测试的输入是3D流数据及其使用流速度和λ2涡流标识标准的可视化。通过两种类型的输入,EWT模式可鲁棒地提取流向流的条纹,多个次要不稳定性和螺旋涡旋丝。 Bi-Global稳定性分析的结果证明了代表条纹不稳定性的EWT模式。与根据能量或频率提取空间模式的正确正交分解或动态模态分解相反,EWT提供了一种从其空间尺度分解瞬时流动的新策略。

We propose an image-based flow decomposition developed from the two-dimensional (2D) tensor empirical wavelet transform (EWT) (Gilles 2013). The idea is to decompose the instantaneous flow data, or its visualisation, adaptively according to the averaged Fourier supports for the identification of spatially localised structures. The resulting EWT modes stand for the decomposed flows, and each accounts for part of the spectrum, illustrating fluid physics with different scales superimposed in the original flow. With the proposed method, decomposition of an instantaneous 3D flow becomes feasible without resorting to its time series. Examples first focus on the interaction between a jet plume and 2D wake, where only experimental visualisations are available. The proposed method is capable of separating the jet/wake flows and their instabilities. Then the decomposition is applied to an early stage boundary layer transition, where direct numerical simulations provided a full data-set. The tested inputs are the 3D flow data and its visualisation using streamwise velocity & λ2 vortex identification criterion. With both types of inputs, EWT modes robustly extract the streamwise-elongated streaks, multiple secondary instabilities and helical vortex filaments. Results from bi-global stability analysis justify the EWT modes that represent the streak instabilities. In contrast to Proper Orthogonal Decomposition or Dynamic Modal Decomposition that extract spatial modes according to energy or frequency, EWT provides a new strategy as to decompose an instantaneous flow from its spatial scales.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源