论文标题
曲线一维抗铁磁铁
Curvilinear one-dimensional antiferromagnets
论文作者
论文摘要
抗铁磁铁寄主外来的准颗粒,支持高频激发,并且是前瞻性旋转和旋转轨道技术的关键推动因素。在这里,我们提出了一个曲线性抗铁磁性的概念,其中材料响应可以通过几何曲率来量身定制,而无需调整材料参数。我们表明,本质上具有一维的(1D)曲线抗铁抗磁铁的表现为手性helimagnet,具有几何可调的Dzyaloshinskiii-Moriya相互作用(DMI)和NéelVector的方向。曲率诱导的DMI导致自旋波模式的杂交,并实现了低频分支的几何驱动的局部最小值。这将曲线曲线1D抗铁磁铁定位为一种新的平台,用于实现用于抗磁性旋转旋转能力和基本发现的几何性手性手性抗铁磁铁,并在动量空间中形成了相干镁冷凝物。
Antiferromagnets host exotic quasiparticles, support high frequency excitations and are key enablers of the prospective spintronic and spin-orbitronic technologies. Here, we propose a concept of a curvilinear antiferromagnetism where material responses can be tailored by a geometrical curvature without the need to adjust material parameters. We show that an intrinsically achiral one-dimensional (1D) curvilinear antiferromagnet behaves as a chiral helimagnet with geometrically tunable Dzyaloshinskii--Moriya interaction (DMI) and orientation of the Néel vector. The curvature-induced DMI results in the hybridization of spin wave modes and enables a geometrically-driven local minimum of the low frequency branch. This positions curvilinear 1D antiferromagnets as a novel platform for the realization of geometrically tunable chiral antiferromagnets for antiferromagnetic spin-orbitronics and fundamental discoveries in the formation of coherent magnon condensates in the momentum space.