论文标题
局部卷积神经网络,用于地理空间风预测
Localized convolutional neural networks for geospatial wind forecasting
论文作者
论文摘要
在空间栅格数据方面,卷积神经网络(CNN)具有许多积极的品质。翻译不变性使CNN能够检测功能,无论其在场景中的位置如何。但是,在某些领域,例如地理空间,并非所有位置都是完全相等的。在这项工作中,我们提出了局部卷积神经网络,使卷积体系结构能够学习本地功能。我们以可学习的输入,本地权重和更一般形式的形式研究了它们的实例。它们可以添加到任何卷积层,易于端到端训练,引入最小的额外复杂性,并让CNN在需要的范围内保留大部分好处。在这项工作中,我们解决了时空预测:测试我们在合成基准数据集中方法的有效性,并处理三个现实世界风预测数据集。对于其中一个,我们提出了一种方法来空间订购无序数据。我们比较了同一数据上最新的时空预测模型。使用卷积层的模型可以并且随着我们的本地化而扩展。在所有这些情况下,我们的扩展可以改善结果,因此通常是最先进的结果。我们在公共存储库中共享所有代码。
Convolutional Neural Networks (CNN) possess many positive qualities when it comes to spatial raster data. Translation invariance enables CNNs to detect features regardless of their position in the scene. However, in some domains, like geospatial, not all locations are exactly equal. In this work, we propose localized convolutional neural networks that enable convolutional architectures to learn local features in addition to the global ones. We investigate their instantiations in the form of learnable inputs, local weights, and a more general form. They can be added to any convolutional layers, easily end-to-end trained, introduce minimal additional complexity, and let CNNs retain most of their benefits to the extent that they are needed. In this work we address spatio-temporal prediction: test the effectiveness of our methods on a synthetic benchmark dataset and tackle three real-world wind prediction datasets. For one of them, we propose a method to spatially order the unordered data. We compare the recent state-of-the-art spatio-temporal prediction models on the same data. Models that use convolutional layers can be and are extended with our localizations. In all these cases our extensions improve the results, and thus often the state-of-the-art. We share all the code at a public repository.