论文标题

一类新的不连续的太阳风解决方案

A new class of discontinuous solar wind solutions

论文作者

Shergelashvili, Bidzina M., Melnik, Velentin N., Dididze, Grigol, Fichtner, Horst, Brenn, Günter, Poedts, Stefaan, Foysi, Holger, Khodachenko, Maxim L., Zaqarashvili, Teimuraz V.

论文摘要

一类新的一维太阳风模型是在一般的多潮流流体动力框架内开发的。考虑了具有局部加热源的准绝热径向扩张的特殊情况。我们考虑在整个径向域上具有连续马赫数的分析解决方案,同时允许流速,密度和温度跳跃,前提是在临界点附近存在外部能源来源,从而支持这种物理量的跳跃。这与标准的Parker太阳风模型和原始喷嘴解决方案都大不相同,因为不允许使用这种不连续的解决方案。我们获得了对应于慢速和快风的治理方程的新样品分析解。

A new class of one-dimensional solar wind models is developed within the general polytropic, single-fluid hydrodynamic framework. The particular case of quasi-adiabatic radial expansion with a localized heating source is considered. We consider analytical solutions with continuous Mach number over the entire radial domain while allowing for jumps in the flow velocity, density, and temperature, provided that there exists an external source of energy in the vicinity of the critical point which supports such jumps in physical quantities. This is substantially distinct from both the standard Parker solar wind model and the original nozzle solutions, where such discontinuous solutions are not permissible. We obtain novel sample analytic solutions of the governing equations corresponding to both slow and fast wind.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源