论文标题
无损微波光子计数的量子超材料
Quantum metamaterial for nondestructive microwave photon counting
论文作者
论文摘要
检测旅行光子是许多量子信息处理任务的必不可少的原始性。我们基于微弱的非线性超材料,在微波域中引入了单光子检测器设计,其中非线性由大量的约瑟夫森连接提供。弱非线性和大空间范围的结合绕过了基于局部Kerr培养基的知名障碍限制方法。使用数值多体模拟,我们表明单光子检测保真度随着超材料的长度而增加,以实验现实的长度接近一个。检测器的一个显着特征是超材料方法允许大型检测带宽。与在光学结构域中运行的常规光子检测器形成鲜明对比的是,光子不会被检测破坏,并且光子波袋受到最小的干扰。我们引入的检测器设计为微波频域中的量子信息处理,量子光学和计量学提供了新的可能性。
Detecting traveling photons is an essential primitive for many quantum information processing tasks. We introduce a single-photon detector design operating in the microwave domain, based on a weakly nonlinear metamaterial where the nonlinearity is provided by a large number of Josephson junctions. The combination of weak nonlinearity and large spatial extent circumvents well-known obstacles limiting approaches based on a localized Kerr medium. Using numerical many-body simulations we show that the single-photon detection fidelity increases with the length of the metamaterial to approach one at experimentally realistic lengths. A remarkable feature of the detector is that the metamaterial approach allows for a large detection bandwidth. In stark contrast to conventional photon detectors operating in the optical domain, the photon is not destroyed by the detection and the photon wavepacket is minimally disturbed. The detector design we introduce offers new possibilities for quantum information processing, quantum optics and metrology in the microwave frequency domain.