论文标题
Exomoons and Summoons的轨道稳定性,并在Kepler 1625b-I中申请
Orbital Stability of Exomoons and Submoons with Applications to Kepler 1625b-I
论文作者
论文摘要
在动态背景下出现的一个有趣的问题:月亮可以拥有月亮本身吗?太阳系中不存在这种配置,尽管从理论上讲可能是可能的。 Kollmeier等。 (2019年)确定了托管长期寿命的亚卫星或下卷所需的卫星的临界大小。但是,对于这些潜艇存在的轨道限制仍然不确定。 Domingos等。 (2006年)表明,卫星稳定在主机行星山半径$ r_ {h,p} $的一小部分,这又取决于其主机轨道的怪异性。在此激励的情况下,我们以$ 10^5 $行星轨道模拟了一个外事物和潜艇系统,同时考虑了许多初始轨道相,以$ r_ {h,p} $或主机卫星卫星的山地半径$ r_ {我们发现,假设圆形的共面轨道,Exomoons的稳定性限制为0.40 $ r_ {h,p} $,子货架为0.33 $ r_ {h,h,sat} $。此外,我们讨论了使用Neptunes尺寸的Exomoon候选者Kepler 1625B-I(Teachey et al.2018),通过光度法,径向速度或直接成像观察来检测这些亚卫星的可行性(Techhey等人,20108年),并确定稳定性如何塑造未来候选者的识别。
An intriguing question in the context of dynamics arises: Could a moon possess a moon itself? Such a configuration does not exist in the Solar System, although this may be possible in theory. Kollmeier et al. (2019) determined the critical size of a satellite necessary to host a long-lived sub-satellite, or submoon. However, the orbital constraints for these submoons to exist are still undetermined. Domingos et al. (2006) indicated that moons are stable out to a fraction of the host planet Hill radius $R_{H,p}$, which in turn depends on the eccentricity of its host's orbit. Motivated by this, we simulate a system of exomoons and submoons for $10^5$ planetary orbits, while considering many initial orbital phases to obtain the critical semimajor axis in terms of $R_{H,p}$ or the hosts satellite's Hill radius $R_{H,sat}$, respectively. We find that, assuming circular coplanar orbits, the stability limit for exomoons is 0.40 $R_{H,p}$ and for a submoon is 0.33 $R_{H,sat}$. Additionally, we discuss the observational feasibility of detecting these sub-satellites through photometric, radial velocity, or direct imaging observations using the Neptunes-sized exomoon candidates Kepler 1625b-I (Teachey et al. 2018) and identify how stability can shape the identification of future candidates.