论文标题

MAC地址的实用基于哈希的匿名性

Practical Hash-based Anonymity for MAC Addresses

论文作者

Ali, Junade, Dyo, Vladimir

论文摘要

鉴于MAC的地址可以唯一地识别人或车辆,因此在大型地理范围内进行的不断跟踪引起了政府和公众的严重隐私问题。先前的工作表明,由于MAC地址的搜索空间较小,因此可以轻松地倒置基于简单的基于哈希的匿名方法。特别是,可以用39位表示整个分配的MAC地址空间,并且基于频率的攻击使50%的MAC地址被列举为31位。我们提出了一种实用的MAC方法,可以使用计算昂贵的哈希功能和截断产生的哈希来解决匿名化,以允许K匿名。我们提供了计算预期碰撞百分比的表达式,表明对于24位的消化,可以存储多达168,617个MAC地址,碰撞率少于1%。我们通过实验表明,通过将100个MAC地址的数据集存储在13位,1,000个Mac地址17位和10,000个Mac地址20位,可以实现1%或更低的碰撞率。

Given that a MAC address can uniquely identify a person or a vehicle, continuous tracking over a large geographical scale has raised serious privacy concerns amongst governments and the general public. Prior work has demonstrated that simple hash-based approaches to anonymization can be easily inverted due to the small search space of MAC addresses. In particular, it is possible to represent the entire allocated MAC address space in 39 bits and that frequency-based attacks allow for 50% of MAC addresses to be enumerated in 31 bits. We present a practical approach to MAC address anonymization using both computationally expensive hash functions and truncating the resulting hashes to allow for k-anonymity. We provide an expression for computing the percentage of expected collisions, demonstrating that for digests of 24 bits it is possible to store up to 168,617 MAC addresses with the rate of collisions less than 1%. We experimentally demonstrate that a rate of collision of 1% or less can be achieved by storing data sets of 100 MAC addresses in 13 bits, 1,000 MAC addresses in 17 bits and 10,000 MAC addresses in 20 bits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源