论文标题
简化的重新连接方法,用于数据驱动的微结构 - 竞争关系的预测
Simplified ResNet approach for data driven prediction of microstructure-fatigue relationship
论文作者
论文摘要
金属成分中的异质微观结构导致局部变化的疲劳强度。金属疲劳在很大程度上取决于非金属包裹物和毛孔的大小和形状,通常称为“缺陷”。结节铸铁(NCI)包含石墨包含(结节),其形状和频率会影响疲劳强度。可以通过微机械有限元模型模拟疲劳强度。这些模型的缺点是巨大的计算成本。因此,我们采用了数据驱动的机器学习方法。更确切地说,我们利用了最近引入的简化残留神经网络(SIMRESNET)(Herty等人,残留神经网络的动力学理论,2020年)来预测金属学数据的疲劳强度。在培训中,我们使用疲劳数据,该数据由微力模型和Shakedown定理模拟。微机械模型分别直接来自结节铸铁的显微照片。 SimResnet的应用显示出很好的性能,可以通过结节铸铁的局部微观结构来预测疲劳强度。我们显示了几个测试用例。 SimResnet的简化特征可以快速预测微结构的疲劳,即使与经典的残留神经网络相比。
The heterogeneous microstructure in metallic components results in locally varying fatigue strength. Metal fatigue strongly depends on size and shape of non-metallic inclusions and pores, commonly referred to as "defects". Nodular cast iron (NCI) contains graphite inclusions (nodules) whose shape and frequency influence the fatigue strength. Fatigue strength can be simulated by micromechanical finite element models. The drawback of these models are the large computational costs. Therefore, we employ a data-driven machine learning methodology. More precisely, we utilize the simplified residual neural network (SimResNet) which was recently introduced (Herty et al., Kinetic Theory for Residual Neural Networks, 2020) to predict fatigue strength from metallographic data. For the training, we use fatigue data which is simulated with a micromechanical model and the shakedown theorem. The micromechanical models are derived directly from micrographs of nodular cast iron, respectively. The application of SimResNet shows a good performance to predict fatigue strength by local microstructures of nodular cast iron. We show several test cases. The simplified character of SimResNet enables fast predictions of fatigue by microstructures, even in comparision to classical residual neural networks.