论文标题

量子至上电路的经典模拟

Classical Simulation of Quantum Supremacy Circuits

论文作者

Huang, Cupjin, Zhang, Fang, Newman, Michael, Cai, Junjie, Gao, Xun, Tian, Zhengxiong, Wu, Junyin, Xu, Haihong, Yu, Huanjun, Yuan, Bo, Szegedy, Mario, Shi, Yaoyun, Chen, Jianxin

论文摘要

人们认为,随机量子电路很难经典模拟。这些已被用来证明量子至上:在任何古典计算机上都是不可行的量子计算机上的计算任务。 Arute等人对量子至上的主张的基础。 (自然,574,505--510(2019))最初估计需要Summit,这是当今世界上最强大的超级计算机,约10,000年。仅200秒钟内,在无菌量子处理器上执行了相同的任务。 在这项工作中,我们提出了一种基于张张网络的经典模拟算法。使用峰会可观的群集,我们估计模拟器可以在不到20天的时间内执行此任务。在中等大小的实例上,我们将运行时间从数年降低到几分钟,比无烟熏自身快几倍。这些估计是基于对并行子任务的明确模拟,并且没有隐藏成本的空间。模拟器的关键要素是识别和优化计算的“茎”:一系列占主导地位成本的成对张量收缩。经典仿真时间的裁量降低,以及进一步改进的建议,表明实现量子至上可能需要一段时间继续持续的量子硬件开发,而无需明确的首次演示。

It is believed that random quantum circuits are difficult to simulate classically. These have been used to demonstrate quantum supremacy: the execution of a computational task on a quantum computer that is infeasible for any classical computer. The task underlying the assertion of quantum supremacy by Arute et al. (Nature, 574, 505--510 (2019)) was initially estimated to require Summit, the world's most powerful supercomputer today, approximately 10,000 years. The same task was performed on the Sycamore quantum processor in only 200 seconds. In this work, we present a tensor network-based classical simulation algorithm. Using a Summit-comparable cluster, we estimate that our simulator can perform this task in less than 20 days. On moderately-sized instances, we reduce the runtime from years to minutes, running several times faster than Sycamore itself. These estimates are based on explicit simulations of parallel subtasks, and leave no room for hidden costs. The simulator's key ingredient is identifying and optimizing the "stem" of the computation: a sequence of pairwise tensor contractions that dominates the computational cost. This orders-of-magnitude reduction in classical simulation time, together with proposals for further significant improvements, indicates that achieving quantum supremacy may require a period of continuing quantum hardware developments without an unequivocal first demonstration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源