论文标题

韦尔的问题:一种计算方法

Weyl's problem: A computational approach

论文作者

Bowser, Isaac, Kiers, Ken, Mitchell, Erica, Kiers, Joshua

论文摘要

波方程在有限域中的特征值的分布称为Weyl的问题。我们描述了几个与累积状态相关的计算项目,定义为具有波数的状态数量达到最大值。该数量及其衍生物(状态的密度)在核物理学,退化的费米气体,黑体辐射,玻璃体凝结和Casimir效应中具有重要应用。 Weyl的定理指出,在大型波数的极限中,累积状态数仅取决于边界域的体积,而不取决于其形状。对此行为的校正是众所周知的,并取决于边界域的表面积,其曲率和其他特征。我们描述了几个项目,使读者可以研究三个边界域的这种依赖性 - 矩形盒子,一个球体和一个圆形圆柱体。可以通过考虑各种限制来分析准二维系统和二维系统。这些项目在统计力学中有应用,但也可以集成到量子力学,核物理学或计算物理学课程中。

The distribution of eigenvalues of the wave equation in a bounded domain is known as Weyl's problem. We describe several computational projects related to the cumulative state number, defined as the number of states having wavenumber up to a maximum value. This quantity and its derivative, the density of states, have important applications in nuclear physics, degenerate Fermi gases, blackbody radiation, Bose-Einstein condensation and the Casimir effect. Weyl's theorem states that, in the limit of large wavenumbers, the cumulative state number depends only on the volume of the bounding domain and not on its shape. Corrections to this behavior are well known and depend on the surface area of the bounding domain, its curvature and other features. We describe several projects that allow readers to investigate this dependence for three bounding domains - a rectangular box, a sphere, and a circular cylinder. Quasi-one- and two-dimensional systems can be analyzed by considering various limits. The projects have applications in statistical mechanics, but can also be integrated into quantum mechanics, nuclear physics, or computational physics courses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源