论文标题

通过散射与可解释的深神经网络通过散射进行位移 - 不足的相干成像

Displacement-agnostic coherent imaging through scatter with an interpretable deep neural network

论文作者

Li, Yuzhe, Cheng, Shiyi, Xue, Yujia, Tian, Lei

论文摘要

通过散射进行连贯的成像是计算成像中的一项艰巨任务。已经探索了基于模型的和数据驱动的方法来解决反散射问题。在我们以前的工作中,我们已经表明,深度学习方法可以通过看不见的扩散器来做出高质量且高度可推广的预测。在这里,我们提出了一个新的深神经网络(DNN)模型,该模型对更广泛的扰动不可知,包括散射器变化,位移和系统散焦,最高10倍。此外,我们开发了一个新的分析框架,用于解释DNN模型的机制,并基于无监督的尺寸减小技术可视化其普遍性。我们表明,我们的DNN可以将特定于散射的信息解散并提取特定于对象的信息,从而在不同的散射条件下实现概括。我们的作品为通过散射媒体采用了高度健壮且可解释的深度学习方法的方式铺平了道路。

Coherent imaging through scatter is a challenging task in computational imaging. Both model-based and data-driven approaches have been explored to solve the inverse scattering problem. In our previous work, we have shown that a deep learning approach can make high-quality and highly generalizable predictions through unseen diffusers. Here, we propose a new deep neural network (DNN) model that is agnostic to a broader class of perturbations including scatterer change, displacements, and system defocus up to 10X depth of field. In addition, we develop a new analysis framework for interpreting the mechanism of our DNN model and visualizing its generalizability based on an unsupervised dimension reduction technique. We show that our DNN can unmix the scattering-specific information and extract the object-specific information so as to achieve generalization under different scattering conditions. Our work paves the way to a highly robust and interpretable deep learning approach to imaging through scattering media.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源